
THE
ZX81
COMPANION

EDIT

1 B
AND W THEN

2 0|3u
uNPiQT MUN

THE

AMCC ARC T A.M STORY

GHAPHIlsW MUBOUI

KPilt
PAUSI

FUNCTION
NEW
LINE

Ul AH

SHIFT I Z •
£

SPACEMX ’
n

Bob Maunder

LINSAC

The
ZX81

Companion

by
Bob Maunder

ISBN 0 907211 01 1.

LINSAC, 68 Barker Road, Middlesbrough TS5 5ES

© LINSAC 1981

FIRST EDITION
First Printing . .
Second Printing
Third Printing .

July 1981
November 1981
March 1982

All Rights Reserved. No part of this publication may be reproduced or transmitted
by any means without the prior permission of LINSAC.

Cover picture reproduced from the Sinclair ZX81 Manual.

Printed by Prontaprint, Middlesbrough

ii

PREFACE

The Sinclair ZX81 microcomputer has been widely acclaimed as a
tremendous breakthrough in personal computing, even surpassing its
predecessor the ZX80. Certainly no other computer has been bought in
such quantities by such a wide range of people in such a short space of
time since its launch in February 1981. The ZX81 advertising campaign
has sought to attract the general public to the concept of using a
computer in the home.

"The ZX81 Companion" has been written to assist ZX81 owners in using
their computer in the specific areas of information retrieval, education,
and games. The Sinclair ZX81 Manual, while being an excellent intro
duction to ZX81 BASIC, does not discuss any real uses for the machine.
However in the Companion, readers will find documented programs that
can be used immediately to utilise the ZX81 to its full potential, as well
as detailed guidelines on the design and development of their own
programs. The book is therefore aimed at those familiar with the con
cepts of ZX81 BASIC but keen to get the ZX81 moving onto higher
things. The fourth chapter is aimed at more advanced users who are
interested in the workings of the ZX81 Monitor and methods of dis
playing and using Monitor routines.

It is the opinion of the author that for any serious applications the ZX81
definitely requires the addition of a 16K RAM pack. However many
programs in the book can be run on 1K machines, the main exception
being Chapter Two which develops a sophisticated information retrieval
package for which 16K is naturally vital.

The author has been involved in the ZX series of microcomputers since
he acquired the first ZX80 kit in March 1980, and he is co-author of
Linsac's 'The ZX80 Companion'. He holds an MSc in Computer Science
from Birmingham University and is Head of Computing at Hartlepool
College, where he pioneered the use of the ZX80 in education.

Thanks are due to Sinclair Research for permission to reprint the ZX81
keyboard layout (but not the Monitor listing!), to Joe Foster for con
tributing the Appendix on program development and to Ian Logan for
the section on Monitor routines and entry points.

iii

CONTENTS

Page No

CHAPTER ONE - GRAPHICS AND REALTIME TECHNIQUES

1.1 Introduction ... 1
1.2 Axes and Coordinates... 1
1.3 Straight Lines .. 3
1.4 Moving Objects ... 8
1.5 Trigonometry .. 10
1.6 More Straight Lines... 13
1.7 Circles and Other Interesting Shapes.................................. 17
1.8 Drawing with Other Characters....................................... 19
1.9 Realtime 22
1.10 Example Programs.. 25

CHAPTER TWO - INFORMATION PROCESSING

2.1 Introduction ... 35
2.2 Character Handling... 36
2.3 Design of Data Processing Programs.................................. 38
2.4 Data Structures .. 41
2.5 File Processing ... 50

CHAPTER THREE - EDUCATION

3.1 The ZX81 as an Educational Tool 66
3.2 Educational Programs... 70

CHAPTER FOUR - THE MONITOR

4.1 Examining and Using the Monitor..................................... 96
4.2 Monitor Listing .. 103

SOLUTIONS TO EXERCISES ...115

APPENDIX..119

INDEX ...131

IV

INTRODUCTION AND NOTATION

No.

1
1
3

. 8
10
13
17
19
22
25

35
36
38
41
50

66
70

96
103

115

119

131

Readers who own 16K ZX81 's will be able to get the most out of this
book, but those with 1K ZX81 's or updated ZX80's will also benefit.
Memory requirements for programs are clearly marked, and in many
of the routines in Chapter One in particular, 1Kand 16K alternatives
are given. It is the author's opinion that owners of 8K ROM ZX80's are
certainly at a disadvantage with regard to the main benefit of the ZX81
- animated displays. Such users will be well advised to consider the
purchase of a conversion kit, currently available in the UK from
Compshop Ltd., to provide the SLOW compute and display facility.
However ZX80 owners without this conversion will still be able to use
most of the programs herein, in some cases with the addition of suitable
PAUSE statements to simulate SLOW mode.

Material in the four chapters is developed from a simple starting point,
and in the first three chapters exercises are used to give the reader
practice in the techniques discussed. Solutions are found at the end of
the book.

A technique known as logical assignment is used in many of the programi
to save on program space: a necessity for 1K machines. This technique
combines several conditions and values in a single LET statement, and
may not be familiar to some readers: study of the Sinclair Manual is
recommended to clarify the use of the technique.

The notation used in the program listings is designed to be as unambigu
ous as possible. Since spaces in printed text can be important in some
circumstances, many of the listings specify a space by the letter b (for
blank). Confusion between the letter I and the number 1, or the letter
0 and the number zero can occur so the following conventions are used:

I = letter
1 = number one
0 = letter
0 = number zero

Graphics and inverse characters can also be difficult to represent. If text
is to be represented in inverse form then this is indicated by the word
"inverse" in brackets at the end of the PRINT statement. Graphics
characters are generally drawn in and sometimes also identified by their
key, e.g. 500 PRINT (inverse space)

V

CHAPTER ONE
GRAPHICS AND REALTIME TECHNIQUES

1.1 INTRODUCTION

We consider in this chapter the use of ZX81 statements to produce diag
rams, pictures and moving displays. Graphics is the art of drawing items
on the ZX81 screen by means of addressing different parts of the display
as you might fill in squares on a piece of graph paper. Realtime methods
involve getting the ZX81 to respond to you immediately : although all
ZX81 programs work in a conversational mode with the user entering
information (in response to INPUT statements) and the computer
replying with a display, programs can be written which will react immed
iately the user presses a key, whether or not the computer was doing
something else at the time.

These two techniques can be immensely useful. On the serious side,
information can often be more clearly presented and understood if it is
in the form of diagrams, such as graphs or histograms; simple maps or
room layouts can also be shown. On the lighter side, games have much
more realism and challenge if they involve pictures, and if the pictures
move and the player has to respond quickly to this movement, so much
the better.

It will be helpful if the reader has looked over Chapters 17, 18 and 19 of
the'ZX81 BASIC Programming' manual first. The statements covered in
the theory and practical exercises below are PLOT, UNPLOT and PRINT
AT (graphics) and IN KEYS and PAUSE (realtime). Do not be deterred
by the initial emphasis on theory: in order to produce good graphics you
need to have a good grasp of what is often titled 'coordinate geometry'.
At the end of this chapter you will be programming your own arcade
type games so stick with it!

1.2 AXES AND COORDINATES

In using the graphics features of the ZX81 we think of the TV screen as
a piece of graph paper split into squares. We can black-in a square using
PLOT and rub out a blacked-in square using UNPLOT. However to pick
out a blacked-in square we must have some way of identifying squares
to the ZX81, and this is done by considering the screen as having two

1

lines of reference or axes, at right angles to each other at the left and
bottom of the screen.

The vertical axis at the left of the screen is known as the y axis, and the
horizontal axis at the bottom is called the x axis. The point at which
they intersect is called the origin.

Coordinates

The number of 'squares' on the ZX81 screen is fixed at 64 x 44, i.e. there
are 64 divisions along the x axis and 44 divisions along the y axis. To
complicate the issue the divisions are numbered from 0 to 63 and from
0 to 43, as shown below.

Y AXIS

To identify a particular square on the graph we specify how far along
the x axis it is, and then how far along the y axis. For example the
blacked-in square in the diagram above is at position 3 on the x axis and
position 5 on the y axis and we say its position on the graph is therefore
(3,5). This pair of numbers in brackets is known as the coordinates of

2

the square. Note that the Sinclair Manual calls these squares "pixels".
The PLOT statement uses the coordinates to identify a square's position
and black it in (however brackets are omitted). Try this:

PLOT 3, 5

A black square appears towards the bottom left hand corner of the
screen, or at position (3,5).

Any square in the 64 x 44 graph can be identified using coordinate pairs
from the origin at (0,0) to the top right at (63,43). RUN the following
program to get the four corners of the screen display

10 PLOT 0,0
20 PLOT 0, 43
30 PLOT 63, 0
40 PLOT 63, 43

The next section shows how squares may be drawn in groups to form
lines.

1.3 STRAIGHT LINES

Equations of X and Y Axes

A straight line may be drawn on the screen by drawing in several squares
together. The squares which form a line all have something in common
and we can form an equation for a line using this fact. As an example,
consider squares along the x axis:

(0, 0) , (1,0) , (2, 0) and so on up to (63, 0)

All of these squares have something in common — they have their y
position equalling zero. Therefore we say that the x axis has the equatio

y = 0

Similarly all squares along the y axis have their x coordinate equalling
zero so the equation of the y axis is

x = 0

3

Therefore in order to draw in the y axis on the screen, all we need to do
is PLOT every square where x = 0. Thus

10 FOR Y = 0TO 43
20 PLOT 0,Y
30 NEXT Y

Add the following lines and we produce a set of x and y axes on the
screen.

40 FOR X = 0 TO 63
50 PLOT X,0
60 NEXT X

In fact any vertical line will have an equation

x = a number

while any horizontal line will have an equation.

y = a number

Drawing a Rectangle

You can get some interesting visual effects using just these simple con
cepts. The following program draws the edges of the screen 'graph':

10 FOR X = 0 TO 63
20 PLOT X,0
30 PLOT X,43
40 NEXT X
50 FOR Y = 0 TO 43
60 PLOT 0, Y
70 PLOT 63,Y
80 NEXT Y

Notice how the vertical lines and horizontal lines are plotted in pairs
through use of a pair of PLOT statements in each of the two loops.
For 1K ZX81 's, substitute 37 for 43 in lines 30 and 50 for a complete
rectangle.

Another example shows how the entire screen may be blacked in from

4

the left

10 FORX = 0TO63.........(Use 61 for1KZX81's)
20 FOR Y = 0 TO 43
30 PLOT X,Y
40 NEXT Y
50 NEXT X

Try reversing the order of the loops and see the effect.

Exercise 1(a): Produce an entirely black screen display by
drawing vertical lines from right to left, going down the
screen.

1 (b): Draw a black square with its bottom left corner
at position (10,5), sized 20 x 20 squares.

(Solutions on page 115)

Equations of General Lines

Most lines that we will need to draw on the ZX81 will not be vertical or
horizontal, but diagonal. We now discuss how we can work out the
common features or equations of such lines, and thus how they can be
plotted on the screen.

The diagram below shows a line drawn between points (0,6) and (18,42).

5

If this line were drawn on graph paper we would see that it also passes
through a sequence of positions starting

(1,8) (2,10) (3,12) (4,14) (5,16) ...

The common factor about all the positions through which the line passes
is that the y coordinate is twice the x coordinate plus six. We can there
fore say that the line has the following equation

y = 2x + 6

and we can therefore draw it on the ZX81 screen thus

10 FOR X = 0 TO 63
20 PLOT X, 2*X + 6
30 NEXT X

However this teminates with error code B after getting as far as x = 18,
since the y value calculated when x = 19 is 44, which is off the screen.

Any diagonal line that we care to choose can be reduced to a simple
equation of the form

y = mx + c

where m and c represent numbers.

The values of m and c can be seen more clearly from the following graph
showing y = 2x + 6 again.

6

e gradient or steepness of the line is measured by height divided by
igth. As shown above the line goes up 36 squares as it goes along 18
jares, so the gradient is 36 -s- 18 or 2. This represents m in the general
jation of a straight line, y = mx + c. Similarly c is given by where the
e cuts the y axis. To understand this, remember that the y axis is where
■ 0. Therefore when the line y = mx + c and the line x = 0 intersect
■n

y = m.0 + c

= y = c

is value is often called the y intercept.

nsider a different line. This one slopes downwards and cuts the x-axis.

ain this line fits the general equation y = mx + c, but this time the
dient m will be negative. The x intercept is easily found by remem-
•¡ng that the x-axis is where y = 0

so y = mx + c
becomes 0 = mx + c
therefore x = —c

m

e following program can be used to demonstrate the effects of different
ues for m and c.

5 REM ENTER VALUES AND PRINT EQUATION
10 CLS
20 PRINT "M=";
30 INPUT M
40 PRINT M;"bC="; (b = space)

50 INPUT C
60 CLS
70 PRINT AT 0,12;"Y=";M;"X+";C
75 REM DRAW AXES
80 FOR X=0TO 63
90 PLOT X,0

100 NEXT X
110 FOR Y=0TO 43
120 PLOT 0, Y
130 NEXT Y
135 REM DRAW LINE
140 FOR X=0TO 63
150 PLOT X,M*X+C
160 NEXT X

(For 1K ZX81 's omit the REM lines)

RUN the program with varying positive and negative values for m and c
and finally c = 0 or m = 0. If the y value becomes negative some peculiar
effects occur because the PLOT statement always takes the positive
values of coordinates. To overcome this add the line

145 IF M*X+C<0 THEN STOP

If you find it difficult to understand why the ZX81 does not do con
tinuous diagonal lines as it would if they were horizontal or vertical,
remember that it is only blacking-in squares on a grid. You may have
come across computers which appear to draw continuous lines on an
output screen, but this is only because the number of squares or
resolution of the display is higher.

1.4 MOVING OBJECTS

Moving Spots

To relieve what for some might be a tedious excursion into school maths,
let us look at how we can get things to move on the ZX81 screen.

The way to produce animation by computer is the same as in cartoons:
display a picture then display it in a slightly different position, and so
on. When we drew lines on the screen we saw them being extended, and
all we need to do to get moving spots is to rub out the trail. Modifying
one of the previous routines gives us

8

10 FOR X=0TO 63
20 PLOT X,0
30 UNPLOT X,0
40 NEXT X

and we see a spot moving quickly along the bottom of the screen. To
slow it down and make it a bit clearer we could add a PAUSE

25 PAUSE 10
26 POKE 16437,255

(Vital for updated ZX80's)

Two points here — remember to include the POKE after every PAUSE
if you use FAST mode, and also make sure you PAUSE while the spot
is on the screen, not after you have just rubbed it out.

Exercise 1(c): Write a program to get a spot to move round the
edges of the screen anti-clockwise starting at the origin (the
program above starts you off).

Moving Objects

For greater realism a complete object can be built up and moved across
the screen. As we will see later this is much better using the PRINT AT
instruction but it can be achieved by PLOT, as below

10 FOR X=0 TO 61
20 PLOT X,0
30 PLOT X+1,0
40 PLOT X+2,0
50 PLOT X+1,1
60 PAUSE 10) or try 60 FOR A=1 TO 20
70 POKE 16437,255) 70 NEXT A
80 UNPLOT X,0
90 UNPLOT X+1,1

100 NEXTX

We see that not all of the object need be rubbed out each time, since the
remaining part forms part of the next drawing of the object. The
annoying blinking is much less accentuated using PRINT AT as we shall
see, or even using the dummy loop.

9

1.5 TRIGONOMETRY

Tangents

If you have started to read this section in spite of seeing the title then
you are doing well. It is true that sines, cosines and particularly tangents
can be useful in our theory of graphics. We will consider just tangents,
but you can read up any secondary school maths text book to swot
sinesand cosines if you find it interesting.

A tangent is the ratio of two sides of a right-angled triangle:

The tangent of the angle at A
is a

b

But think of this on a graph

height

and we see that the tangent
is the same as the gradient of
a straight line.

Therefore we can start talking about lines being drawn at certain angles
on the screen. For example the following program invites you to enter
an angle (0-90°) and it then draws a line from the origin at this angle to
the x axis.

10 PRINT AT 0,0;"ANG LE=";
20 INPUT A
30 PRINT A
40 IF A<0 OR A>90THEN GO TO 20

10

50 LET M=TAN(A*2*PI/360)
60 FOR X=0TO 63
70 IF M*X>43 THEN GOTO 100
80 PLOT X,INT(M*X)
90 NEXTX

100 PAUSE 100
110 POKE 16437,255
120 PRINT AT 0,6;"bbbb"
130 GO TO 10 (b = one space)

les 10—50 invite the user to enter an angle and then the value of m in
j general equation for straight lines through the origin (y = mx) is
culated. As an added complication, the ZX81 will only handle
igents of angles expressed in radians which is a unit of circular measure
t since one degree is 2tf radians (or it)

360 180

। can do an easy conversion.

nes 60 — 90 draw the line, making sure to stop drawing when the
top of the screen is hit

les 100 — 130 cause the program to repeat so that several lines can be
drawn on the same graph.

Exercise 1 (d): Write a program to draw a "spider's web" of
lines, similar to the ones above using the angles 0° to 90°
at 5° intervals.

e program above and the exercise will crash when the angle is equal to
lety degrees because the tangent of 90° is infinitely large — draw the
angle if you cannot see why! A good way of stopping it anyway!

Pythagoras

e above-named gentleman may again not be too popular amongst
■ne readers but his theorem can help us draw some nice pictures if
thing else. Basically he informs us that in a right angled triangle such
the one below the square of the hypotenuse is equal to the sum of the
jares of the other two sides.

11

i.e. c2 = a2 + b2

This can be used in straight line geometry to work out the length of a line
e.g.

Take length of line as L

then L2 = 32 + 42

= 25

so L = 5

Try changing this instruction in the solution of exercise 1(d) to see an
example of how Pythagoras can justify his existence:

50 IF X*X + Y*Y> 1849 THEN GOTO 80

and a very nice set of equal length lines are produced in an arc.

Beware when using Pythagoras' theorem, particularly in loops, because
the SQR function and even powers of numbers are very slow to evaluate.
For example the following statement has the same effect as the instruc
tion above but it is much slower:

50 IF SQR(X**2 + Y**2) > 43 THEN GO TO 80

Try it and see.

12

1.6 MORE STRAIGHT LINES

Lines Through a Point

Having done a quarter of a spiders web above, why not try a full web
shape. To do this we need to know some more theory about equations
of lines on a graph, and in particular how to calculate the equation of a
line between two points.

For example, say we want to draw a line between (2,3) and (15,20).
Both of them are on the line (general equation y = mx + c) so both
satisfy its equation.

So for point (2,3) we have 3 = 2m + c
and for point (15,20) we have 20 = 15m + c

and then we have another mathematical unpleasantry, a pair of simul
taneous equations! We eventually find that in a general case, the equa
tion through two points (p,q) and (r,s) is obtained by

y-q
s-q

x ~ P
r- p

Enough of the theory, let's draw some more pictures. We want to get a
web or star shape, with the centre at the centre of the screen, (32,22).
Therefore we want to draw lines from different points on the y axis
through (32,22). This makes things easier since the y axis has the
equation x = 0.

So taking (p,q) = (32,22)
and (r,s) = (0,y)

we get y — 22 = x — 32 for S from 0 to 43
~-32

which after a lot of bashing comes to

y = 22 — (x — 32) (s — 22) for S from 0 to 43
32

13

giving the following program

10
20

FOR S=0 TO 43 STEP 5 ... (Use 39 rather than 43
FOR X=0 TO 63 with 1K ZX81's)

30 LET Y=INT(22—(X—32)*(S—22)/32)
40 IF Y>43OR Y<0THEN GO TO 70
50 PLOT X,Y
60 NEXT X
70 NEXT S

Lines with a Given Slope

Exercise 1(e): The display from the program above does not give
a complete web effect because lines are only drawn from the
y axis. Extend it by working out the equation of lines
through a point with a given gradient and thus produce a
complete web.

Spirals

An interesting display can be produced by drawing lines around the out
side of the screen which gradually move into the centre in a 'rectangular
spiral'. It is also quite an interesting exercise in logic.

Consider a general case where we are somewhere in the middle of the
display:

X0.Y1 X1, Y1

X0, Y0 X1, Y0

We can label the corners of the current rectangle as shown above. There
fore we initially set the values of X0, X1, Y0, Y1 to be at the edges of
the screen and then gradually change them in the course of the program

14

to produce the spiral. However we have to be very careful as to where in
the program we modify these values.

This works very nicely:

10 LET X0=0 ... 15)
20 LET X1=63 ... 48) for1KZX81's
30 LET Y0=0 ... 20)
40 LETY1=43 ... 43)
50 FOR X=X0TO X1
60 PLOT X,Y0
70 NEXT X
80 FOR Y=Y0TO Y1
90 PLOT X1,Y

100 NEXT Y
110 FOR X=X1 TO X0 STEP -1
120 PLOT X,Y1
130 NEXT X
140 LET X1=X1-1
150 LET Y0=Y0+1
160 LET Y1=Y1 —1
170 FOR Y=Y1 TO Y0STEP-1
180 PLOT X0,Y
190 NEXT Y
200 LET X0=X0+1
210 GOTO 50

We need to stop the process somewhere so add

165 IF Y0>=Y1 THEN GO TO 500

and if you want to check that we stop at the right place add

500 PRINT "0”

If you like this display and feel it could be extended to give a continu
ously moving video background in a room, you are absolutely right:
wait for Section 1.7!

Bouncing

Many of the early TV games involved a ball bouncing around the screen.

1 5

We are now going to look at how to get a moving object to bounce off a
flat object.

We assume that if our ball hits a wall at a certain angle it will bounce off
at the same angle, i.e.

You are probably getting the sinking feeling that this is going to involve
more theory: true, but not too much. It all has to do with the gradient
of the line followed by the ball. We find that the gradient has its sign
reversed after reflection from the wall. If you are into such things, this
is because

tan (90—a) = — tan (90+a)
or incident gradient = -reflected gradient

Therefore if a ball travelling with a gradient of m hits a wall at a point
(a,b) then it will continue with gradient negated and its equation will be

y = m(x—a) + b
or y = mx + (b—ma)

For drawing on the ZX81 we also have to be clear that if the ball hits a
wall it will change direction on the screen, and therefore needs to be
plotted carefully.

The following program draws a line starting at the origin on the screen
at an angle specified by the user and then bounces it off the edges of the
screen. Its path is left on the screen to illustrate the theory above.
Use angles between 20° and 80° for useful results.

10 PRINT "ANGLE=";
20 INPUT A
30 CLS
40 LET M=TAN(A*PI/180)

16

50 LET X=0
60 LET 1=1
70 LET C=0
80 LET X=X+I
90 LET Y=M*X+C

100 IF X<=0OR Y<=0THEN STOP
110 IF X>=43OR Y>=43THEN GOTO 140
120 PLOT X,Y
130 GOTO 80
140 LET M=—M
150 LET l=l—2*(X=43)
160 LET C=Y—M*X
170 GOTO 80

If you want to show just a single moving spot rather than continuous
lines, add suitable UNPLOT and PAUSE statements.

1.7 CIRCLES AND OTHER INTERESTING SHAPES

We will use all this theory eventually in developing some good graphics
games, so let us consider a final chunk of coordinate geometry.

Circles

We can specify the equation of a circle by noting that every point on the
circle is the same distance away from the centre:

Taking the centre (a,b) and the radius as r then we can say for a general
point (x,y) on the circle, using the ubiquitous pythagoras that

17

(x—a)2 + (y—b)2 = r2

and we can take x—a as r cos 9
and y—b as r sin 9 where 9 is any angle

since (r cos 9)2 + (r sin 0)2 = r2(cos20 + sin20)
= r2 as it happens

Therefore we get x = a + r cos 0
and y = a + r sin 0

So let's see what the ZX81 makes of plotting a circle:

10 PRINT "RADIUS=";
20 INPUT R
30 PRINT R;"bCENTRE:bX=";
40 INPUT A
50 PRINTA;"bY=";
60 INPUTB
70 PRINT B
80 FOR 0=0 TO 360
90 LET P=Q*PI/180

100 PLOT A+R*COS P,B+R*SIN P
110 NEXTQ

RUN the program and enter the radius followed by the x— and y— co
ordinates of the centre. Make sure that the circle does not go over the
edge of the screen in any direction. Before your eyes a circle will appear,
albeit slowly. The slowness results from the evaluation of cosines and
sines at line 100 — the ZX81 takes a long time to work these out.

Exercise 1 (f): Work out the equation of a circle centred at the
origin and radius 40 and therefore write a program to draw
a circle quadrant (quarter arc) on the screen with radius 40.

Finally we choose a selection of interesting shapes and show how they
may be plotted.

18

Parabola

Here is a nice parabola

10 FORX=0TO63
20 LET Y=INT((2.52—0.04*X)*X)
30 PLOT X,Y
40 NEXT X

Ellipse

An ellipse is almost a general case of a circle or a parabola. Try this
general ellipse plotter:

1 PRINT "A=";
2 INPUT A
3 PRINT A;"bB=”;
4 INPUTB
5 PRINT B

10 FOR 0=0 TO 360
20 LET P=Q*PI/180
30 PLOT A*(1+C0S P),B*(1+SIN P)
40 NEXT Q

Try it with various values for A and B such as:

A = 30, B = 20
A = 20, B = 20
A = 5, B = 21

1.8 DRAWING WITH OTHER CHARACTERS

The PRINT AT Instruction

All our graphics work so far has been of the 'join the dots' variety, since
all the PLOT statement can do is to black-in squares. Fortunately this
is not the limit of the ZX81's capability. The PRINT AT statement can
also be used for picture drawing and it has one disadvantage but one
considerable advantage over PLOT. The disadvantages is that it cannot
address parts of the screen in so much detail as PLOT — the figure

19

below shows its limitations

COLUMNS 31

LINES

It can only draw in 22 x 32 positions and it works by means of specifying
a line number and a column number, rather than standard x and y coord
inates. Its great advantage is that any ZX81 character can be placed at a
position.

The following simple routine illustrates the point

10 INPUT L
20 IF L<0THEN STOP
30 INPUT C
40 INPUT S$
50 PRINT AT L,C;S$
60 GOTO 10

RUN the program and then keep entering groups of three items specify
ing line number, column number and character (or character sequence)
and the ZX81 puts the character at this screen position.

ZX81 Video Show

Any of the programs previously considered can be modified to use
PRINT AT rather than PLOT, and as promised here is a program to give
a pleasant background video display to any room:

10 LET L0=0

20

20 LET L1=21 ... 15 for 1K ZX81's
30 LET C0=0
40 LET C1=31 ... 15 for 1K ZX81's
45 LET Z$=CHR$(INT(RND*11 + 128*(RND<0.5)))
50 FOR L=L0TO L1
60 PRINT AT L,C0;Z$
70 NEXT L
80 FOR C=C0 TO C1
90 PRINT AT L1,C;Z$

100 NEXTC
110 FOR L=L1 TO L0 STEP-1
120 PRINT AT L,C1;Z$
130 NEXT L
140 LET L1 = L1—1
150 LET C0=C0+-1
160 LET C1=C1 —1
170 FOR C=C1 TO C0STEP-1
180 PRINT AT L0,C;Z$
190 NEXTC
200 LET L0=L0+1
205 IF L0>=L1 THEN GO TO 500
210 GO TO 45
500 CLS
510 RUN

It could even prove as addictive as 'Emmerdale Farm'!

or if you do not appreciate squares, how about circles?

10 FOR R=10TO 2 STEP —1
15 LET Z$=CHR$(INT(RND*11 + 128*(RND<0.5)))
20 FOR 0=0 TO 360 STEP 10
30 LET P=Q*PI/180
40 PRINT AT 10+R*COS P,15+R*SIN P;Z$
50 NEXTQ
60 NEXT R
70 CLS
80 GOTO 10

Try making your own variations — perhaps using a basic ellipse shape
which grows fatter, thinner, longer or shorter with varying characters
being used to draw it. You need not stick to graphics characters,
many normal characters or inverse video characters can be very nice.

21

1.9 REALTIME

Instructions

At the beginning of the chapter we saw that realtime programs are ones
in which the computer responds to user action immediately, no matter
what other action it is currently taking. The ZX81 instruction that
provides this facility is INKEYS. There is however another instruction
which assists in a similar feature, moving displays, and that is PAUSE.

Almost all the programs in this section are designed for ZX81 's running in
compute and display mode (i.e. SLOW). However FAST mode is also
available and in fact on 8K ROM ZX80's it is compulsory. In FAST
mode, the only way to generate moving displays in BASIC is to cause
the ZX81 to display the results of its processing by the PAUSE instruction,
or rather PAUSE and POKE together since problems occur if you forget
the accompanying POKE. We will put very little emphasis on PAUSE in
this section, since IN KEYS is the centre of the ZX81's realtime facilities.

INKEYS

INKEYS is at the same time the most peculiar and the most powerful
instruction on the ZX81, and we hope that after reading this section and
trying out the programs you will be rather better informed than if you
only had access to Chapter 19 of the Sinclair Manual!

First of all let us get our terminology right. INKEYS is not really an
instruction like LET or IF but a function, since it is used as part of a
ZX81 statement, and in fact has to be accessed via the FUNCTION key.
Whenever the ZX81 executes a statement which includes I NKEYS it
looks at the keyboard, and if a key is being pressed at that instant, the
character of the key is put into INKEYS, i.e. if you were pressing 3 then

INKEYS = "3"

If a key is not being pressed when the line containing INKEYS is ex
ecuted, then INKEYS is set to the null string.

The following two line routine shows how it works

10 PRINT INKEYS;
20 GOTO 10

22

3UN the program and then briefly touch any key on the keyboard.
.et's assume you touched P — you will see a number of P's displayed on
he screen. You may wonder why there are several rather than just one,
ince you touched the key only once. To understand this you need to
lave an appreciation of how fast the ZX81 is computing (even in SLOW
node!): while you have your finger on a key, albeit briefly, the ZX81
:ycles round the GOTO 10 loop several times, the number of times
>eing shown by the number of characters printed. Try pressing another
;ey, and as soon as you do you will see some more characters displayed
in the screen. See if you can touch a key so briefly that only one char-
cter is displayed! While you are not touching a key, nothing is displayed
in the screen, since INKEYS is the nullstring, and PRINT produces
lothing. However if line 10 had read

10 PRINT INKEYS
,e. no semi-colon at the end, the program would have given quite a
lifferent effect since PRINT "" causes a new line to be displayed, and
he ZX81 quickly runs out of screen space.

'ry using the two line program above with entry of keys such as *, +
r =, ie. shift keys. You will see that depression of SHIFT has no effect,
ut SHIFTed keys are displayed normally, even keywords. There are
owever some exceptions eg: EDIT, FUNCTION, GRAPHICS and
IUBOUT. These all produce "?" on the screen, as does the NEWLINE key,
Ve see from this that we can never enter graphic symbols via INKEYS -
ather a shame as we shall see later. Also SPACE is always interpreted
s BREAK and this stops the program.

’o summarise where we have reached so far, we have seen that IN KEYS
5 a way of entering single characters into a program without the need for
NPUT statementsoreven NEWLINE.

Moving Blobs in Realtime

'our reaction to the above treatment of INKEYS may well be “OK, so
vhat?" since it is not immediately obvious how IN KEYS can be used,
lopefully this little program may change your mind.

10
20
30
40
50

LET L= 10
LET C = 15
LET Z$ = (inverse space)
IF INKEYS = "5" THEN LETC=C-1
IF INKEYS = "6" THEN LET L=L+1

23

60 IF INKEYS = "7"THEN LET L=L—1
70 IF IN KEYS = "8" THEN LET C=C+1

200 PRINT AT L, C; Z$
210 GO TO 40

The program enables you to move a blob around the screen by pressing
keys 5,6,7 or 8 and the blob moves according to the direction of the
arrows on the keys. This is achieved by testing which key the user is
pressing and changing accordingly the line and column numbers at which
the blob is printed. RUN the program and see what interesting patterns
can be produced. Only keys 5,6,7 or 8 will have any effect since these
are the only values of INKEYS for which the program takes any action.
If the blob goes off a screen edge, the program generally crashes, so to
overcome this add the following lines

80 LET L= L - L* (L=22) + 22* (L=—1) ... 16not22for1K
90 LET C = C — C* (C=32) + 32* (C=—1) ... 26 not 32 for 1K

and we get what is known as "wraparound" — if the line goes off one
edge it reappears at the other edge.

It would also be pleasant if we had a choice of the type of character
shown on the screen, rather than just a blob. With ZX81 technology all
things are possible! Add this

100 LET K = CODE I NKEYS
110 IF (K<>0 AND K<33) OR (K>36AND K<64)
THEN LET Z$ = CHR$ K

If you now press any single character key other than 5,6,7 or 8 this
character becomes the one being used for drawing on the screen. To
stop any of these programs, simply press the SPACE key.

Note that in line 110 above we are careful to avoid taking a value of
INKEYS when no key is being pressed: we exclude it when it is equal
to the null string (character code 0). Note also that line 110 has

LET Z$ = CH R$ K

rather than LET Z$ = INKEYS as you might have expected. This is
because it is possible that the value of I NKEYS might have changed
between lines 100 and 110 (in particular it might be null) and this could
cause inconsistencies in the program and therefore the resulting display.

24

1.10 EXAMPLE PROGRAMS

Introduction

In this section we will see how many of the concepts, and especially the
maths, outlined above can be used in sophisticated realtime programs.
Each program is given with detailed documentation so that the reader
can understand how the program has been designed and developed.
Appendix One shows the method of program design used and it is strongly
recommended that a definite methodology should be used in programming,
Although it isvery tempting to start typing in BASIC instructions as soon
as possible when developing a program, this causes more delay later, and
it is in fact much quicker to design a program properly before touching
the keyboard. Also, if a program is developed according to our method,
documentation such as that given below builds up naturally so that you
do not have to write it all up afterwards.

Anyway, on with the programs.

SHOOTING GALLERY (1K Memory)

Description

The program simulates a shooting gallery that you might find at a fair.
An object moves from left to right across the screen under a row of
numbers 1 to 9. The player attempts to hit the object by pressing one
of the numeric keys 1 to 9 as the object passes under the number. There
are ten goes and the program displays the current number of hits and the
go number.

Sample Screen Format

— line 0
— line 1
— line 2
— line 3

25

Method

i. Set up screen and initialise hits H to zero
ii. Carry out the following with go number G = 1,2, —, 10

a. Set object position C to zero
b. Clear shot line
c. Clear message line & print go number
d. Display object at position C
e. If a key 1 — 9 pressed 1. display shot

2. if object hit: A. Display message
B. Increments

display H
C. Jump to (6)

3. Wait for key to be released
4. Incremente
5. If C less then 31 jump to (d)
6. Wait for 5 seconds

iii. Display end message & stop

List of Variables

H = no. of hits scored
G = go number (between 1 and 10)
N = number of key pressed (valid only for keys 1—9)
C = position of object on line

Program Listing

10 LET H=0
20 PRINT
30 PRINT "bbb1bb2bb3bb4bb5bb6bb7bb8bb9bbb"

(inverse spaces & digits)
40 PRINT AT 4,0;"GO b NO.” (inverse)
50 PRINT AT 4,26;"HITS" (inverse)
60 FOR G=1 TO 10
65 LET C=0
70 P RI NT AT 3,0

(inverse — 30 spaces)
100 PRINT AT 4,6;G;TAB 12;"bbbbbbb"
110 PRINT AT 3,C;"B C" (inverse space and graphics 5)
130 LET N=CODE INKEYS-28
140 IF N<1 OR N>9THEN GOTO 220

26

150 PRINT AT 3,N*3;"*" (inverse asterisk)
160 IF N‘3oC+1 THEN GOTO 210
170 PRINT AT 4,12;"GOT b HIM” (inverse)
180 LET H=H+1
190 PRINT AT 4,30 ;H
200 GO TO 240
210 IF INKEYSO'"' THEN GOTO 210
220 LET C=C+1
230 IF C<>31 THEN GOTO 110
240 PAUSE 250
250 NEXT G
260 PRINT AT 4,12;"THE b END” (inverse)

MONEY MAZE (16K Memory)

Description

A treasure chest full of £5 notes is located in the centre of a maze.
You are on the outside of the maze and have to reach the treasure by
using keys 5,6,7 or 8 to control your movement (direction arrows).
However the chest has caught fire and the longer you take the less
money there will be.

The program sets up and displays a 21 x 21 maze. The treasure chest is
shown by £ and the player by O. A running counter of the amount of
money left is shown to the right of the screen. The maze is displayed
on the screen so that element i,j is at line i column j.

Sample Screen Format

line 1
line 3 -*•
line 5 -*■
line 7 -*•
line 9 -►

line 13
line 15 -*
line 17 —
line 19 ■*
line 21 -*

£1000

27

Method

Array A of size 21 x 21 is used to hold the maze, with walls held as 128,
space as 0 and the cash is 140 (inverse £).

i. Set up array as shown
ii. Print array in character form
iii. Set sum of money M to 1000
iv. Display M
v. Set player's position at bottom of maze, line L and column C.
vi. Display player's position
vii. Pause to allow player time to see screen
viii. Display player's position
ix. Burn a fiver from M, and if M is zero, display message and stop
x. Display M
xi. Read number N from keyboard
xii. If N between 5 and 8

a. Use N to update L and C to LI and Cl
b. If position (Cl, LI) is the chest print message and stop
c. If position (Cl, LI) is space (not a wall)

1. rubout position (C,L)
2. change C to Cl
3. change L to LI
4. jump to (viii)

xiii. jump to (ix)

List of Variables

A — array of size 21 x 21 holding maze
I,J — loop counters used in setting up array
M — amount of money left
L — line no. of player's position
C — column no. of player's position
N — code number of key pressed (valid for 5 to 8)
LI — new line no. of player's position
Cl — new column no. of player's position

Program Listing

10 DIM A (21,21)
20 FOR l=0 TO 8 STEP 2
30 FOR J=l+1 TO 21-1

28

40
50
60
70
80
90

100
110
120
130
140
200
210
220
230
240
250
260
270
300
310
320
330
332
336
340
350
355
356

360
370
380
390
400
410
420
425
430
440
450
500

LET A(I+1,J)=128
LET A(21—l,J)=128
LET A(J,I+1)=128
LET A(J,21—1)=128
NEXT J
NEXT I
LET A(3,11)=0
LET A(7,11)=0
LET A(13,11)=0
LET A(17,11)=0
LET A(11,11)=140
PRINT
FOR 1 = 1 TO 21
PRINT "b";
FOR J=1 TO 21
PRINT CHR$ A(I,J);
NEXT J
PRINT
NEXT I
LET M=1000
PRINT AT 11,22;"£";M
LET L=20
LET C=11
PRINT AT L,C;"O"
PAUSE 500
PRINT AT L,C; "0"
LET M=M—5
IF M<0 THEN GO TO 600
IF M<1O0 THEN PRINT AT 10,
22;"HURRY"
PRINT AT 11,23;M;"bbb"
LET N=CODE INKEYS-28
IF N<5 OR N>8 THEN GO TO 350
LET LI=L—(N=7)+(N=6)
LET CI=C+(N=8)-(N=5)
IF A(LI,CI)=140 THEN GO TO 500
IF A(LI,CI)<>0 THEN GO TO 350
PRINT AT L,C;"b"
LET L=LI
LET C=CI
GO TO 340
PRINT AT 10,22;"YOU GOT"

29

510 STOP
600 PRINT AT 10,22;"TOO SLOW”

DUCK SHOOT (16K Memory)

The author wishes to thank the designer of a similar game for the
Research Machines 38(P Z Microcomputer for the idea behind "Duck
Shoot", the author’s first experience of graphical games on a micro.

Description

A picture of a duck on a pond is displayed on the screen with the moon
in the sky. The object is to shoot the duck making sure that you do not
hit the moon in the process. Shooting is done by means of a double
barrelled cannon at the bottom left of the screen which fires up into the
sky and the cannon ball travels in a parabola to eventually hit the pond,
and hopefully the duck. The player chooses the angle of elevation of
the cannon. There are five goes.

For each go the duck and the moon are displayed at different (random)
positions. The duck is drawn at a position starting between columns
12 and 27 at the bottom of the screen, and the moon starting between
columns 12 and 18 at the top of the screen. Scores are shown at the
top right of the screen while the barrel number and angle are displayed
at the top left. The number of the go is shown on the duck itself. The
duck has a range of comments which it makes depending upon the
accuracy or otherwise of the player's shot. The moon drops out of the
sky if the cannon ball hits it.

Sample Screen Format
M 25

20
<—21

30

Method

(i)
(¡¡)

(iii)
(iv)

Initialise scores HD(ducks), HM(moons) and S(shots) to zero
Carry out the following for go number G = 1 .. . 5
(a) clear screen
(b) choose duck position D between 12 & 27 along line
(c) choose moon position M between 12 & 18 along line
(d) draw screen display and headings
(e) carry out the following for barrel number B = 1 and 2

(1) Display barrel number
(2) Enter angle of elevation A
(3) If angle not between 45° and 85° go to (2) above
(4) Display angle
(5) Plot path of cannonball. For each plot position

(x,y)

A. If (x,y) is on the moon
(i) Increment HM (moon hits)
(ii) Drop moon out of sky
(iii) Increment and display S (shots)
(iv) Go to (f) below

B. If (x,y) is on the duck
(i) If (x,y) is a central hit

(a) Display "DEAD”
(b) Increment HD (duck hits)
(c) Increment and display S (shots)
(d) Go to (f) below

(ii) Display "OUCH”
(iii) Go to (7) below

(6) Display "MISS"
(7) Increment and display S (shots)
(8) Wait

(f) Wait
Clear screen
Display final score of ducks hit.

List of Variables

HD = no. of ducks killed
HM = no. of times moon hit
S = no. of shots fired

31

G = go number (1—5)
D = starting x-axis position of duck
M = x-axis position of moon
B = barrel number (1 or 2)
A = angle of elevation of cannon (valid for 45° — 85°only)
I = loop counter for display of cannon ball's path
X = x position of cannon ball
Y = y position of cannon ball
M2 = 2 times M
D2 = 2 times D
Z = loop counter for display of falling moon

Equation

The path of the cannon ball is plotted using the following equations:

X = INT (0.0 14*1 *(90 —A))
and Y = INT (l*(100-l)*0.0172) for I = 0. . . 100

The X equation is chosen so that the cannon ball lands in the pond at
the far right of the screen when angle A is 45°. The Y equation is chosen
so that the cannon ball reaches its maximum height when I = 50, i.e. in
the middle of its flight path.

Program Listing

2 LET HD = 0
4 LET HM = 0
6 LET S = 0

10 FOR G=1 TO 5
20 CLS
30 LET D=INT(RND*16)+12
40 LET M= INT(RND*7)+12
45 LET M2=M*2
46 LET D2=D*2
50 PRINT "BARREL"
60 PRINT "ANGLE=?"
70 PRINT AT 0,25;HD;"DUCKS"
80 PRINT AT 1,25;HM;"MOONS"
90 PRINT AT 2,25;S;"SHOTS"

100 PRINT AT 1,M;"6B"
110 PRINT AT 2,M;"C"

32

120 PRINT AT 3,M;''ÜÖ"
130 PRINT AT 21,0;".................................. " (32 dots)
140 PRINT AT 20,D;"—□ bb/"
150 PRINT AT 21,D;"ŒB";CHR$(G+156);"B"
160 FOR B=1 TO 2
170 PRINT AT 0,6;B
180 PRINT AT 1,6;"?b"
190 INPUT A
200 IF A>85 OR A<45 THEN GO TO 190
205 PRINT AT 1,6;A
210 FOR l=0TO 100
220 LET X=INT(0.014*I*(90—A))
230 LET Y=INT(I*(100-I)*0.0172)
240 PLOT X,Y
250 IF X<M2OR X>M2+1 OR Y>41 OR Y<36THEN GO

TO 400
270 LET HM=HM+1
280 FOR Z=1 TO 18
290 PRINT AT Z,M;"b"
300 PRINT AT Z+1,M;"H5"
310 PRINT AT Z+2,M;"E"
320 PRINT AT Z+3,M;"!S"
330 NEXTZ
340 LET S=S+1
350 PRINT AT 2,25;S
360 GO TO 530
400 IF X<D2OR X>D2+9OR Y>3THEN GO TO 495
410 IF X=D2 OR X=D2+1 OR X=D2+8 OR X=D2+9THEN GO

TO 450
420 PRINT AT 20,D-4;"DEAD"
430 LET HD=HD+1
432 LET S=S+1
434 PRINT AT 2,25;S
440 GO TO 530
450 PRINT AT 20,D—4;"OUCH"
491 GOTO 500
495 NEXT I
497 PRINT AT 20,D—4;"MISS"
500 LET S=S+1
505 PRINT AT 2,25;S
510 PAUSE 150
520 NEXTB

33

530 PAUSE 150
540 NEXT G
550 CLS
560 PRINT AT 10,10;"THE END"(inverse)
570 PRINT AT 12,3;"YOU KI LLEDb";HD;"bDUCKS

Several more games are included in Chapter Three.

34

CHAPTER TWO - INFORMATION PROCESSING

2.1 INTRODUCTION

This chapter is aimed at readers who want to use a ZX81 with 16K RAM
to store and retrieve quantities of information, i.e. who want the micro
computer to act as an electronic filing system. The objective may be to
design programs to assist in leisure activities or in small businesses. If you
do not have a 16K RAM pack you will not be able to use much of the
material in this chapter, but perhaps as you read through you will be
encouraged to invest in one!

Data and Data Processing

RG Anderson in his book 'Data Processing and Management Information
Systems' defines data processing as “the systematic recording, arranging,
filing, processing and dissemination of facts". The term is often used
synonymously with business computing as against scientific or technical
computing. As a general rule business data processing involves the simple
manipulation of large quantities of information while technical com
puting involves the complex manipulation of small quantities of infor
mation.

For example, a typical data processing activity might involve stock
control: here a large number of records are maintained but the most
complex processing involved would be simple addition or subtraction for
goods received or despatched respectively. Contrast this with a typical
technical computing activity, the evaluation of sets of equations: here a
small set of coefficients is used as data but complex matrix arithmetic
has to be used to produce the solutions.

It is the author's opinion that data processing is a much more realistic
function for a home computer than technical computing. Many people
would like a computer to handle all their filing, from addresses and
telephone numbers to recipes, but how many require trigonometric and
logarithmic processing capabilities? The only possible application of
such facilities is in games (certainly a useful way to use a home com
puter), but in general, sophisticated maths is not required. It is un
fortunate that home computer manufacturers, Sinclair Research included,

35

have addressed themselves more towards providing these technical com
puting facilities rather than data processing facilities such as large main
memory capacities and good backing storage. In other words, Mr.
Sinclair, why not forget about ARCSIN, ARCCOS and LN and give us
a megabyte of online storage instead!

Hobbyhorses aside, a 16K ZX81 can be used for some very useful small
tasks on the data processing side and we hope to give you the tools to
develop your own such programs in this chapter.

2.2 CHARACTER HANDLING

Character Processing

While technical computing is mainly concerned with crunching numbers
together, data processing deals largely with characters, either alphabetic
characters or numbers not used for arithmetic purposes (e.g. code
numbers). It is therefore essential that the reader has a good grasp of
ZX81 character handling before embarking upon an information pro
cessing project. We suggest that you read over Chapters 7 and 21 of
the Sinclair Manual and then follow the sections below.

Dimensions of Strings

A string can be used without first DIMensioning it, but giving a string a
dimension can be useful if we always want it to be of fixed length. As
an example, try this:

10 DIM A$(3)
20 PRINT "ENTER A WORD"
30 INPUT AS
40 PRINT AS
50 GO TO 20

The program will print the first three characters of any word you enter
because A$ can only contain three characters.

To stop the above program is difficult, but possible: rubout the quotes
around the cursor when invited to enter a word and then enter CH RS
(99**99). This causes the ZX81 to attempt to evaluate 99" — a

36

number too large for it to hold — so it crashes with error code 6.

Returning to dimensions of strings, it can be very useful to define a one
character string which will always be used to INPUT responses to
questions in a program, e.g.

10 DIM Z$(1)

100 PRINT "DO YOU WANT TO CONTINUE?"
110 INPUT Z$
120 IF Z$="N" THEN STOP

You may wonder why we bother with a dimension — why not do this:

100 PRINT "DO YOU WANT TO CONTINUE"
110 INPUT Z$
120 IF Z$(1)="N" THEN STOP

The answer is that if the user makes a null entry, i.e. just presses NEW-
LINE, the first version is OK but the second version crashes with code 3
at line 120 because Z$(1) does not exist! It is vital in data processing
programs which other people will use that the INPUTS be made as idiot-
proof as possible. (See BOMB-PROOFING in Section 2.5).

Substrings

As we will see later in this chapter, verification of information input to
a program is very important. Otherwise bad data gets onto files and it
tends to make the whole system look ropy. A common verification is
to check whether a string is alphabetic, i.e. contains letters A ... Z only.

10 PRINT "ENTER ALPHABETIC WORD"
20 INPUT AS
30 IF A$=""THEN GO TO 20
40 PRINT AS;
50 FOR 1=1 TO LEN AS
60 IF A$(I)<"A" OR A$(I)>"Z" THEN GO TO 100
70 NEXT I
80 PRINT "IS ALPHABETIC"
90 STOP

100 PRINT "HAS ERROR CHARACTER AT POSITION";!
110 PRINT "PLEASE RE-ENTER"

37

120 GO TO 20

Several techniques are employed in this program. Firstly at line 30 —
always test for a null input and if one is found go back to the INPUT
statement: try this out and see the effect from the user's end. Secondly
at line 60— relational operators work with characters as well as numbers.
Lastly at line 100— error messages should be as precise as possible to
inform the user what he is doing wrong.

N.B. Be careful when using this routine because it treats 'space' as non-
alphabetic, so ''JOHN SMITH" would be rejected as non-alphabetic.

Exercise 2(a): modify the above program to allow spaces and
hyphens as well as letters A to Z.

We often need to determine whether a string contains a given word or
sequence of characters.

Exercise 2(b): write a program to enter a sentence and then test
whether it contains the word "THE" and give an approp
riate message.

2.3 DESIGN OF DATA PROCESSING PROGRAMS

Systems Analysis

In the world of business computing the analysis, design and implement
ation of computerised systems is a profession in itself. Obviously we are
not going to call in a professional systems analyst to design programs for
our 16K ZX81, but many of the methods used by the professionals can be
be scaled down and applied for our purposes.

Is It Feasible?

One of the first stages in systems analysis is the feasibility study — a
survey of whether the area under study can usefully be computerised.
Many data processing tasks are best done manually rather than by com
puter, and this applies especially to home DP. For example you may
have some excellent ideas for a Recipe Access and Testing System for
your spouse but how feasible is it that he/she will use RATS on a day-to-
day basis? Do you have enough extra sockets or even room in the

38

kitchen for a ZX81, TV and cassette recorder? Will you be able to con
vince him/her that it is ten times better than his/her present manual
system? Can the ZX81 cope with RATS storage requirements? Clearly
these questions need honest answers before embarking upon a project
which could consume many hours of precious time. A few of the areas
you should consider are listed below:

BENEFITS - what substantial advantages would a computer
ised system have over the present system?

ZX81 CAPACITY — can the ZX81 store the program routines
and data necessary for the system?

TECHNICAL — are you sufficiently knowledgeable about the
ABI LITY system and the relevant ZX81 facilities to

implement your aims?

TIMESCALE — can the system be implemented in the time
available?

USE — will the system be regularly and conscientiously
used by the person(s) for whom it is designed?

Only after getting a positive answer to the above questions should you
proceed with the design.

How Is It Done Now?

Before designing a new system a systems analyst takes a detailed look at
how the present system operates using techniques such as interviewing
staff, examination of documents, questionnaires and observation. If
you are designing a system to be used by yourself you will have a clear
idea of how you currently handle things and how things could be
improved. However if you are producing a program to be used by some
one else, you must get all this information from them. Since we are
considering mainly filing systems on the ZX81 you need details of

Number of file records — present and future requirements
Size of records
How records are identified
How often records are added, changed or deleted.
Typical contents of records

39

How records are processed
Checking procedures

When we discuss the design of DP programs you will see why such facts
are needed.

How Should It Be Done?

When getting together your ideas regarding features to be included in the
computerised DP system, you need to be clear of the limitations of the
current system and how these could be overcome. Eventually of course
the facilities to be provided need to be listed in detail and a program
routine designed to provide each facility. Appendix One describes a
programming methodology that works: it is very important when writing
a large program that a considerable amount of detailed program design
is put in before touching the ZX81 keyboard.

You will need to pay particular attention to record formats and screen
formats, i.e. what will be held in a file and what will appear on the screen.
File formats are discussed in detail in Section 2.4. Good screen formats
are vital for a workable program, particularly if the program will be used
by a non-computer specialist, for example your husband or wife.
Typically, in a section of the program to allow you to add new records to
the file, the information presented on the screen should clearly and
concisely describe what data needs to be entered and in what order.
Features such as inverse video and judicious use of PRINT AT statements
can make the program very user-friendly rather than user-nasty. It is
best to actually map out on a piece of graph paper what will appear on
the screen at major points in the program, and this can then be used to
give you line and column numbers when you come to program your
PRINT statements.

The Moment of Truth

Having designed the program, written it and debugged it according to
the rules in Appendix One, the time comes to actually use it — "go live"
in computing terminology. If someone else is using the program make
sure that they are well-informed as to what to do to reap the amazing
benefits offered by the program or else your efforts will have been
wasted. In fact, if your family or others will be using your masterpiece
of the programmer's art, a major exercise on your part will be selling the

40

system to them and training them: people will not use a computer
(particularly if they object to nasty electronic objects and trailing wires)
unless they are convinced it will help them in their own tasks or
activities.

A final word of caution — a "parallel implementation" is often the best
way of introducing your new system. In other words do not burn all
your address books and telephone directories on the day that you intro
duce your Computerised Address and Telephone System. There is the
remote possibility that someone might try something that you had not
thought of and a hitherto unnoticed bug in CATS will jump out and
grab the ZX81 by the throat; or even the not unheard of vagaries of 16K
RAM packs could make the system die just after you have typed in a
hundred and fifty names and addresses.

2.4 DATA STRUCTURES

Definitions

In this section we consider how information may best be organised for
use as an 'electronic filing system'.

First we define the terms used. A field is an item of data on a particular
topic. A record is a collection of fields with some feature in common,
and a file is a collection of related records, often organised in order.

To illustrate this terminology we introduce a sample application, a club
membership list. This example will be used as the basis for all the con
cepts introduced in later sections of the chapter also. Assume that the
list is currently kept by means of cards in a box, one card per member.
The file is then the collection of cards in the box, while a record is an
individual card and a field is some item on the card, e.g. name.

41

A card might look like this:

BETELGEUSE BREAKERS CLUB

Membership Form

Nameford ...Pre.£ec^........................

Address

................ .V-P.r>.dor>..................

Post Code „■&.XA.&.... i.usf....................

Telephone ..Q.I..T...Z15l5. .7..S..^A.3..........
Special Interest

Membership Number......... .^■.3......................
Handle........E.^r^n.rn.c^r).........................

N.B. For the
uninitiated, HANDLE
is the code name used
to identify a breaker
or CB user

Files

The formats of records and fields are very important since the file forms
the heart of the data processing system. Each heading on the card above
will be a field on a member's record in the Betelgeuse Breakers Club
(BBC) system which we are now starting to design. Whereas on a card
we can have a few dotted lines upon which can be entered information,
in a computerised system we must be much more precise as to the
length of fields. The maximum number of characters allowed for each
field must be chosen carefully. Every character will take up a byte of
ZX81 memory so brevity is to be encouraged, although clarity must not
suffer as a result.

Assume we choose the following:

NAME — length 15 characters
ADDRESS — length 50 characters
POSTCODE— length 8 characters
TELEPHONE NUMBER — maximum of 10 digits
SPECIAL INTEREST —'length 20 characters
MEMBERSHIP NUMBER - 3 digits
HANDLE — length 15 characters

42

Two fields above are numeric. As the reader is no doubt aware, numbers
can either be stored in the ZX81 as characters or digits, e.g.

LET A$="123'' (characters)
or LET A=123 (digits)

As far as memory requirements are concerned, a character string is stored
in N+2 bytes where N is the number of characters, while a number is
always stored in five bytes. Therefore if a number is more than three
digits long it is more economic to use numeric format than character
format. Another consideration is the usage to which the number is put:
if the number will be used in any calculations it may be best to store it
in numeric format since arithmetic cannot be carried out on characters,
although of course VAL can be used to convert a number from character
format to numeric format.

It may be helpful to the programmer if we split some of the fields down
into subfields. For example, if we want to access membership records by
surname then we could make NAME split into FORENAME and SUR
NAME, or perhaps INITIALS and SURNAME. Similarly, a separate
field for TOWN could be useful: it all depends, as we discuss below, on
how the file will be accessed.

Tables

The SPECIAL INTEREST field merits more detailed attention. It is
quite likely that the interests of the Betelgeuse Breakers can be
classified into main areas. To save space on the file we could then
choose some code or code number to identify each of these special
interests. For example:

Code No.
1
2
3
4
5
6

Special Interest
Demolition
Pangalactic Gargle Blasters
Sirius Cybernetics Corporation
Improbability Drive
Interplanetary DX
Vogon Poetry

and so on.

If the actual interest had to be displayed somewhere in the program, a

43

table could be kept relating the code number to the special interest. In
fact, for simplicity the code number could act as the subscript to a
string array holding the special interests.

Other Data Structures

For completeness it should be mentioned that several other ways of
organising data apart from simple files and tables are possible. Linked
lists and tree structures can be very useful in certain applications. The
diagram below shows a binary tree structure:

HARRIS

PRIME DEC

IBM HP ICL BURROUGHS

GEC DATA GENERAL

Such structures are implemented by means of each record having a left
and right pointer to other records. Such organisation can be very useful
in manipulating the data contained therein, since to move records around
the tree (e.g. in sorting) involves only the resetting of pointers.

Files, Tables and the ZX81

Most microcomputers have facilities to store files of data on a secondary
memory device such as cassettes or floppy discs. Unfortunately the
Sinclair ZX81 does not. However, when a ZX81 program is SAVED on
cassette the data used by the program (in variables and arrays) is stored
as well, and it is this feature that enables us to consider file processing on
aZX81.

Returning to our example, BBC could use an array for each field on a
record

e.g. array N$
array A$
array P$
array T
array S

for NAMES
for ADDRESSES
for POSTCODES
for TELEPHONE NUMBERS
for SPECIAL INTEREST code numbers

44

array M for MEMBERSHIP numbers
array H$ for HANDLE

Then a complete record would consist of a combination of members of
these arrays, e.g. the first member would have his name stored in N$(1)
address in A$(1), postcode in P$(1), telephone number in T(1) and so on.
Assuming the system is designed for one hundred members, the arrays
would be declared as follows:

DIM N$(100,15)
DIM A$(100,50)
DIM P$(100,8)
DIM T(100)
DIM S(100)
DIM M(100)
DIM H$(100,15)

We can immediately calculate how much storage time this will occupy

array N$ takes up about 100x15 = 1500 bytes
array AS H II II 100x 50 = 5000 bytes

PS t! II It 100x8 800 bytes
" T II II II 100x5 500 bytes

S II II II 100x5 500 bytes
" M II II II 100x5 500 bytes

H$ II II II 100x15 = 1500 bytes

Total 10300 bytes

Another approach to file storage on the ZX81 is to have a single array, say
R$, holding the records so that R$(1) = first record, and so on. In this
case each field starts at a given position and the numbers must be stored
in character form. We may describe the records in RS using a RECORD
FORMAT document such as the one following

45

BBC System RECORD FORMAT Member File

No. of Records = IOO Length of Record =102.

Name of Array = R.

FIELD
No. FIELD NAME

START
BYTE

END
BYTE LENGTH VALUES

1 Ncvme 1 16 lb

2 AdkArees 16 66 50
21 8+reeV IG 46 30
2 2 "T"OXaJ 46 65 20
3 Po'sVcjocle 66 73 *S

4 Tel-No. 74 53 IO Nurvenc

5 Code 54 54 1 l-R
G Kerdoe/ship No. 55 57 3 Nonene
7 Handle «5 1Ö2 15

For 100 records we declare R$ as DIM R$(100, 102) which will take up
10200 bytes approximately.

Notice that we have split ADDRESS into STREET and TOWN, that is
the TOWN will always start at the 46th character position.

This is in fact the record format that we will use in this chapter to
develop BBC programs. However it may help to mention an alternative
in record design — that of variable length fields. In the record format
above, much space will be wasted by data not filling their allowed field
sizes. For example our sample record would be stored as :

1 16 46
+ ♦ +
|FORDbPREFECTbbb23bCHATHAMbGARDENSbbbbbbbbbbbbLONDON^

66 74 84 85 88 102
♦ 4 ♦ ♦ ♦ ♦

fobbbbbbbbbbbbbSW1Xb8LB012359649b 1 42b EARTHMANbbbbbbb | (b=space)

46

Which contains a lot of unused space. With variable length working we
store a special terminator symbol after each field, and it is this that
indicates to the program the end of one field and the start of another.
We could use inverse characters as terminators, e.g.:

FORDbPREFECT S23bCHATMAMbGARDENSfT]LONDON ESW1Xb8LB
□301235964SU3l ED42 IfflEARTHMAN

which only takes up 71 bytes rather than 102 above. If this is an average
saving of space, then with 100 records we will save about 3100 bytes.
The trade-off is that extra processing is required by the program to find
and pick out specific fields. If you are short on file storage space this is
certainly the technique to use, if your computer has the facilities to do
this. Unfortunately the ZX81 does not since we are limited by the way in
which the ZX81 handles string arrays. If we want to store 100 records in
a string array R$, we must dimension R$ thus
thus

DIM R$(100,N)

where N is the length of each record. Thus we must choose a fixed record
length, although we may have variable length fields within a record.

Variable Length Records

The only way of implementing true variable length records is to store
the entire file as one long string with separator symbols between each of
the records. We could for example use inverse asterisks, e.g.

R$

RECORD 1 . RECORD 2 « RECORDS * RECORD 4 etc.

In this way each record only takes up the number of bytes that it needs.
However what you win on the swings you lose on the roundabouts and
efficient storage formats require extra processing to access and use them.
One fairly easy way of accessing records stored in this format is to set up
a pointer array P, in which P(i) shows the starting position of record
i in R$. So to extract record 15 from the array and put it into X$ we
have

LET X$ = R$(P(15) TO P(16)—1)
47

Using this method we can dispense with the separator symbols and store
one record immediately after another.

As an example we can write a program which invites the user to enter
ten names; store the names in a single string N$ and set up pointers in
array P to indicate the starting position of each name. Then we invite the
user to enter a record number (between 1 & 10) and extract and print
out the appropriate record.

The program is listed below:

10 DIM N$(300)
15 DIMP(11)
20 LET C=1
30 PRINT "PLEASE ENTER 10 NAMES"
40 FOR 1=1 TO 10
50 PRINT TAB 5;l;")b";
60 INPUT X$
70 IF X$=""THEN GOTO 60
80 LETP(I)=C
90 LET L=LEN X$
95 LET N$(C TO C+L—1)=X$

100 LET C=C+L
110 PRINT X$
120 NEXT I
125 LETP(I)=C
130 PAUSE 200
135 POKE 16437,255
140 CLS
150 PRINT AT 10,0;"ENTER RECORD NUMBER OR 0 TO STOP"
160 INPUT N
165 IF N=0THEN STOP
170 IF N<0 OR N> 10 THEN GOTO 160
180 CLS
190 PRINT AT 10,7;"RECORD NUMBER";N
200 PRINT AT 12,14;"IS"
210 PRINT AT 14,(31+P(N)-P(N+1))/2;N$(P(N) TO P(N+1)-1)
220 GO TO 130

Method:

(i) Set current position pointer C to 1
(ii) Carry out the following for entry number 1 = 1 ...10

48

(iii)

(a) Enter name X$
(b) Store C at position I in pointer array P
(c) Calculate length L of X$
(d) Insert name X$ into array N$ between positions C and

C+L-1
(e) Update C to next free position in array N$
(f) Print name X$
Store final value of C in P(11)

(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)

Wait for 4 seconds
Clear screen
Enter record number N
If N=0 stop
If N not between 0 and 10 then go back to (vi)
Clear screen
Display record number N by accessing between positions P(N)
and P(N+1)—1 in array N$

(xi) Go back to (iv)

List of Variable Names

array N$ = holds the 10 names as a single string
array P = holds pointers to starting positions of names in N$
C
I

= shows next free position in array N$
= loop counter indicating sequence number of name

being entered
x$
L
N

= name as entered
= length of X$
= record number to be printed

Comments

The technique of adding records to a single string is very useful and can
be applied to records having multiple fields, each of which can themselves
be of variable length.

N.B. The weird looking algebra at line 210 in the column position is to
make sure that the name is printed centrally on the screen, whatever the
length. As we will see in the next section, clarity or even prettiness of
output gives greater user-friendliness (Programs with Pleasant
Personalities).

49

2.5 FILE PROCESSING

Introduction

Having considered the different ways in which information can be stored
in memory we can look at typical ways of processing it. We will first of
all look at our example of the Betelgeuse Breakers Club (BBC) member
ship list in more detail, delving into what processing facilities would be
required; we then think of what features need to be incorporated in file
processing systems generally; and finally we split file processing down
into typical modules such as file creation, validation, sorting and up
date, and use the BBC example to illustrate each of these concepts.

Sample Requirement

In Section 2.4 a typical Betelgeuse Breakers Club membership card was
shown, and the file format for a computerised system was also
explained (see page 46).

In the design of large computer program suites it is common for a user
department to write a report specifying what facilities are required — an
OPERATIONAL REQUIREMENT. Although we are considering
information processing on a much smaller scale, it is still necessary to
list what features our program aims to provide, since for every major
facility a section will need to be included in the program.

The Secretary of the Betelgeuse Breakers Club will probably be looking
for facilities in a computer system similar to the requirements of any
Club Secretary. Let us assume these are:

(i) finding a record by name, membership number or handle
(ii) getting a list of all members' names and handles
(iii) getting a list of all members interested in a certain topic,
(iv) finding out which membership subscriptions are due: if,

as is likely, membership numbers are handed out chrono
logically, this effectively means listing members with
numbers in a certain range.

In addition there are certain run-of-the-mill facilities that must be
available including adding and removing records and so on. These
facilities will be formalised and developed as program modules in the
final subsection of 2.5.

50

Program Features

Before seeing how a typical file processing program is written it is a
salutary exercise to consider certain elements of programming style and
technique. We aim to design systems which will be bomb-proof (or idiot
proof), user-friendly and garbage-free. Such terms may mean as little to
the reader at this stage as redneck radio to an Easter Bunny, but all will
be made clear.

BOMB-PROOFING is the careful design of programs and particularly
INPUT sections so that the program cannot be made to terminate
abnormally, (i.e. crash or bomb out). This is particularly important if
the program user is not the program author. To achieve good bomb
proofing the program designer has to develop a very low opinion of
the abilities of the intended user (even if it is himself), and hence the
synonymous term idiot-proofing. In other words, if a mistake can be
made, assume the user will make it.

As a simple example, consider a part of a program in which a number
between 0 and 999 must be entered, e.g. as a membership number.
Bomb-proofing theory suggests that we should tell the user the valid
range and also check his entry:

100 PRINT "ENTER MEMBERSHIP NO. (0-999)"
110 INPUTM
120 IF M<0OR M>999THEN GOTO 110

We find that causing the program to wait until the user enters a correct
number is usually sufficient, but some designers prefer to add an extra
message, e.g.

110 INPUT M
120 IF M>=0 AND M<=999 THEN GO TO 150
130 PRINT "OUT OF RANGE:REENTER"
140 GO TO 110
150 .. .

However with this system, if the user persists in entering rubbish the
number of error messages printed will eventually fill the screen and
thus crash the system.

Nevertheless the major fau It in the discussion so far is that if the user
makes a non-numeric entry, e.g. WHAT, then the system crashes. The

51

only way to get round this is never to have straight numeric INPUT
statements but always to use strings and then convert them to numbers
if they are valid, e.g.

100 PRINT "ENTER MEMBERSHIP NO.(0-999)"
110 INPUT M$
120 FOR 1=1 TO LEN M$
130 IF M$(I)<"0"OR M$(l)>"9" THEN GOTO 110
140 NEXT I
150 LET M=VAL MS
160 IF M>999THEN GO TO 110

If several numbers are required to be input in a program it is a good idea
to write a general subroutine to carry out the string-to-numeric conver
sion.

As far as string inputs are concerned, the main idiotic action to beware
of is the null input, i.e. where the user just hits the NEWLINE key. In
the last example above LEN MS at line 120 evaluates to zero so the
FOR .. NEXT loop is stopped and line 150 cannot be executed because
VAL of the null string is incorrect (error code C). Therefore every string
input must be followed by a test for the null string. Here:

115 IF M$=""THEN GOTO 110

However the reader should note that if the string has previously been
DIMensioned then this test will not work. This is because the ZX81 sets
a string to all spaces when it is DI Mensioned. You can show this by the
following simple program

10 DIM M$(3)
20 INPUT M$
30 PRINT ",";M$;"."

Do a RUN 20 and enter just NEWLINE : MS is null. However including
the DIM statement by RUN and following the exactly similar procedure
causes three spaces to be printed for M$.

USER-FRIENDLINESS was the second objective in program design.
We have already referred to this and in fact idiot-proofing is part of
being user-friendly or perhaps user-condescending. It consists of making

52

the program as easy to use and human-like as possible. Prompts should
be in plain English wherever possible and screen formats should look
nice with clear headings, central placing and highlighted where appropriate.

As suggested in Section 2.3 the program designer may map out each
screen display on a piece of graph paper and check whether the display
meets these objectives.

GARBAGE-FREE was the third quality required, and this refers to the
old computer adage "GIGO" or "garbage in, garbage out". In other
words if you accept incorrect data into a computer system then you will
get incorrect results. Here we are not considering errors which cause a
program to crash but rather errors which produce wrong results. This is
particularly relevant when information is being fed in to be used as file
records: once information is on file it may be difficult and messy to
remove it.

Books on systems analysis theory list a vast range of checks which can be
carried out on input data to avoid garbage being accepted onto file. Such
validation methods include format checks, range checks, period checks,
compatibility checks and many more. The alphabetic validation listed
on page 37 is a typical example of making sure that numeric or special
characters are not accepted into straight alphabetic fields such as that
for a person's name.

Validation techniques often include an element of redundancy and the
use of a check digit is a good example. A check digit is an extra digit
at the end of a code number which is formed by some specified calcula
tion on the code number. The check digit would initially be calculated
when the code-number was first allocated and then when the code is
entered into a program, the program includes a routine to recalculate
the check digit: if a discrepancy appears then the entry is incorrect.

Unfortunately the reader may find that in all these three aims, some
limitations have to be made purely because of lack of ZX81 memory
space.

53

Program Modules

All of the program modules required by the Betelgeuse Breakers Club
will be included in a single ZX81 program. The program will be menu-
driven, that is, a menu of options available will be displayed at the
beginning, and after the option chosen is completed the program returns
to the menu.

The modular structure of the program is shown below

DATA INITIALISATION

In the first section of the program we declare the arrays required and
other initial data values.

The arrays used are:

N$ = Member's name, length 15 characters
S$ = Member's street, length 30 characters
T$ = Member's town, length 20 characters
P$ = Member's postcode, length 8 characters
B$ = Member's telephone number, length 10 characters
C$ = Member's interest code, length 1 character
M$ = Member's number, length 3 characters
H$ = Member's handle, length 15 characters
R$ = the membership file, 80 records of 1tJ2 characters

54

Z$ = general user's response, length 1 character
l$ = table of interests, 9 records of 15 characters each
X$ = record number entry, length 3 characters
W$ = working space for sorting, length 102 characters

We also define N, the number of records currently on file. Note we are
restricting this to a maximum of EIGHTY because of memory limitations.

This section is only used in the first program run to give initial values to
data — All subsequent program runs are started by GO TO 50 so that
previously defined data are retained.

10 DIM N$(15)
12 DIM S$(30)
14 DIMT$(20)
16 DIM P$(8)
18 DIM B$(10)
20 DIM C$(1)
22 DIM M$(3)
24 DIM H$(15)
26 DIM R$(80,102)
28 DIM Z$(1)
30 DIM l$(9,15)
32 DIM X$(3)
34 DIMW$(102)
40 LET N=0
41 LET l$(1)="lnterest 1"
42 LET l$(2)="l nterest 2”
43
44

I"ct [nterest 3 actual data chosen as required
LET l$(4)= Interest 4

45 LET l$(5)="lnterest 5"
46 LET l$(6)="lnterest 6"
47 LET l$(7)="lnterest 7"
48 LET l$(8)="lnterest 8"
49 LET l$(9)="lnterest 9"

MENU:

The menu section displays the choice of options available and directs
program control to the appropriate module (b=space, below).

55

50 CLS
60 PRINT TAB 4;"BETELGEUSEbBREAKERSbCLUB"
70 PRINT
80 PRINT "LbADDbAbRECORD"
90 PRINT "2.bSORTbRECORDS"

100 PRINT "3.bDELETEbAbRECORD”
110 PRINT "4.bCHANGEbAbRECORD"
120 PRINT "5.bDISPLAYbAbRECORD"
130 PRINT "6.bLISTbTHEbFILE"
140 PRINT AT 19,0;"ENTERbNO.bREQUIREDbORb0bTObSTC
150 INPUT Z$
155 IF Z$="0" THEN STOP
160 LET MO=CODE Z$-28
170 IF MO<1 OR MO>6THEN GO TO 150
180 GO TO 500*MO

MO is the menu option number chosen.

RECORD ENTRY:

Both option number 1 and option number 4 will require the entry of a
record. In the former case, a new record will be added, whereas in the
latter case an already existing record will be changed. However the
entries will both require formatting and checking of inputs, so we write
a general-purpose record entry module which can be used by both
options.

The module will be entered with RN set to the number of the record
to be entered. It then follows this method:

(i) Clear screen.
(ii) Display sequence number RN of record to be entered
(Hi) Enter a member record:

(a) Enter name into N$
(b) Enter street into S$
(c) Enter town into T$
(d) Enter postcode into P$
(e) Enter telephone number into B$, checking it is numeric
(f) Enter interest code into C$, checking it is 1—9
(g) Enter membership number into M$, checking it is 0—999
(h) Enter handle into H$

(iv) Display record as entered.
(v) User confirms or cancels record

56

(a) If confirmed (1) move N$, S$, T$, P$, B$, C$, M$ and
H$to R$ (RN)

(2) add 1 to RN
(3) Output confirmation message
(4) Go to (vi) below

(b) If cancelled (1) Clear screen
(2) Output cancellation message.

(vi) Invite entry of NEWLINE or M
(a) If NEWLINE, go to (i) above
(b) If M return to menu.

Notice that we do not put the user's entries straight onto the file R$: we
demand positive confirmation of his entries before this happens (step (v)
above).

The BASIC for this section appears below:

5000 CLS
5010 PRINT TAB 4;"ENTRYbOFbRECORDbNUMBERb";RN
5020 PRINT AT 2,0;"NAME:"; (inverse)
5030 INPUT N$
5050 PRINT N$
5060 PRINT AT 4,0;"ADDRESS" (inverse)
5070 PRINT AT 5,4;"STREET:"; (inverse)
5080 INPUT S$
5100 PRINT S$
5110 PRINT TAB 4;"T0WN:"; (inverse)
5120 INPUT T$
5140 PRINT T$
5150 PRINT "POSTCODE:"; (inverse)
5160 INPUT P$
5180 PRINT P$
5190 PRINT AT 9,0;"TELbNO:"; (inverse)
5200 INPUT B$
5220 GO SUB 9000
5230 IF NOT OK THEN GO TO 5200
5240 PRINT B$
5250 PRINT AT 11,0;"INTERESTbCODE:"; (inverse)
5260 INPUT C$
5280 GO SUB 9100
5290 IF NOT OK THEN GO TO 5260
5300 PRINT C$

57

5310 PRINT AT 13,0;"MEMBERSHIPbNO:";(inverse)
5320 INPUT MS
5340 GO SUB 9200
5350 IF NOT OK THEN GO TO 5320
5360 PRINT MS
5370 PRINT AT 15,0;"HANDLE:"; (inverse)
5380 INPUT H$
5400 PRINT H$
5410 PRINT AT 19,0;"ISbTHISbCORRECT?"
5420 INPUT Z$
5430 IF ZS="N" TH EN GO TO 5570
5440 IF ZS="Y''THEN GO TO 5460
5450 GO TO 5420
5460 LET RS(RN,1 TO 15)=N$
5470 LET R$(RN,16TO 45)=S$
5480 LET R$(RN,46 TO 65)=T$
5490 LET R$(RN,66 TO 73)=PS
5500 LET RS(RN,74 TO 83)=B$
5510 LET R$(RN,84)=C$
5520 LET R$(RN,85TO 87)=M$
5530 LET RS(RN,88 TO 102)=H$
5540 PRINT AT 19,0;"RECORDbADDEDbTObFI LE”
5550 LET RN=RN+1
5560 RETURN
5570 CLS
5580 PRINT AT 19,0;"ENTRYbCANCELLED”
5590 RETURN

As you can see it is all good solid boring stuff — the meat of data pro
cessing. However, having it as a subroutine at least means we do not
need to enter it twice.

The routine returns with RN incremented by one if a record has been
entered onto the file, or the same if no record has been entered.

The screen format used is:

58

ENTRY OF RECORD NUMBER -

NAME: ____________

ADDRESS

STREET:_____________________________

TOWN: ________________

POSTCODE:________________

TEL. NO: __________

INTEREST CODE: __

MEMBERSHIP NO;

HANDLE: ____________

Message Line

VALIDATION ROUTINES

The record entry section invokes three subroutines to check the entry of
telephone number, interest code and membership number. Each of the
routines return a value OK, set to zero if the entry was invalid or one if
it was valid.

Telephone number validation:

9000 LET OK=0
9010 FOR 1=1 TO 10
9020 IF B$(l)="b" OR (B$(l)>="0" AND B$(I)<="9") THEN

GO TO 9040
9030 RETURN
9040 NEXT I
9050 LET OK=1
9060 RETURN

Interest code validation:

9100 LET OK=0
9110 IF C$=''b" THEN LET C$="0"
9120 IF C$<"0" OR C$>"9" THEN RETURN
9130 LET OK=1
9140 RETURN

59

Membership number validation:

9200
9210
9230
9240
9250
9260
9270
9280

LET OK=0
FOR 1=1 TO 3
IF M$(I)<"0"OR M$(l)>"9"THEN RETURN
NEXT I
LET M=VAL MS
IF M=0THEN RETURN
LET OK=1
RETURN

We can also have record number validation:

9300
9310
9320
9330

LET OK=0
IF X$(1)="b" THEN RETURN
FOR 1 = 1 TO 3
IF X$(l)="b"OR (X$(l)<="9" AND X$(l)>="0")

THEN GOTO 9350
9340
9350
9360
9370
9380
9390

RETURN
NEXT I
LET VN=VAL X$
IF VN>N OR VN=0THEN RETURN
LET OK=1
RETURN

RECORD ADDITION:

This just adds a record at the end of the file and optionally repeats

500
510
520
530

LET RN=N+1
GO SUB 5000
IF RN=N+2THEN LET N=N+1
PRINT AT 20,0;"PRESSbNEWLINEbTObADDbRECOF

b'';RN
540
550
560
570
580

PRINT AT 21,6;"ORbMbFORbMENU"
INPUT Z$
IF Z$="b''THEN GOTO 510
IF Z$=''M"THEN GO TO 50
GO TO 550

60

RECORD AMENDMENT

This is very similar to record addition, but allows the user to re-input
and therefore change a record already on file:

2000 CLS
2010 PRINT AT 20,0;"ENTERbNUMBERbOFbRECORD"
2020 INPUT X$
2030 GO SUB 9300
2040 IF NOT OK THEN GO TO 2020
2050 LET RN=VN
2100 GO SUB 5000
2200 PRINT AT 20,0;"PRESSbNEWLINEbTObCHANGEb

ANOTHER"
2210 PRINT AT 21,6;"ORbMbFORbMENU"
2220 INPUT Z$
2230 IF Z$="b" THEN GO TO 2000
2240 IF Z$="M" THEN GO TO 50
2250 GO TO 2220

SORT:

It is likely that the membership file will be in membership number order,
since as previously mentioned, numbers will probably be allocated in
chronological sequence. However a sorting routine is included to allow
for any anomalies.

There are many different methods of sorting information into sequence
and such methods are easily found in computing textbooks. The
following routine uses a simple exchange sort:

For pointer q from 1 to p :
If no. of record q > no. of record q + 1 then swop record q and
q+ 1

The routine uses characters 85 to 87 of record R$, the membership
number: if sequencing is required on name or another attribute this
specification may easily be changed.

1000 CLS
1002 PRIT
1006 FOR

PRINT AT 20,0;"SORTING ..."
FOR P=N—1 TO 1 STEP-1

61

1010
1020

FOR 0= 1 TO P
IF R$(Q,85TO 87)<=R$(Q+1,85 TO 87) THEN GO
TO 1060

1030
1040
1050
1060
1070
1080
1090
1100
1110

LET W$=R$(Q)
LET R$(Q)=R$(Q+1)
LET R$(Q+1)=W$
NEXTQ
NEXT P
PRINT AT 20,0;"SORTbCOMPLETED"
PAUSE 250
POKE 16437,255
GO TO 50

RECORD DELETION:

If someone leaves the Betelgeuse Breakers Club then their record must
be deleted from file. To do this the user selects this option and specifies
the sequence number of the record to be removed.

1500
1505

CLS
PRINT AT 20,0;"ENTERbNO.bOFbRECORDbFORb
DELETION"

1510
1520
1522
1524
1530
1540
1550
1560
1570
1580
1590

INPUT X$
GO SUB 9300
IF NOT OK THEN GO TO 1510
LET D=VN
PRINT AT 21,©/'DELETING ..."
FOR l=DTO N—1
LET R$(I)=R$(I+1)
NEXT I
LET N=N—1
CLS
PRINT AT 19,0;"RECORDb";D;"bHASbBEENb
DELETED"

1600 PRINT AT 20,0;"PRESSbNEWLINEbFORbMOREb
DELETIONS"

1610
1620
1630
1640
1650

PRINT AT 21,6;"OR M FOR MENU"
INPUT Z$
IF Z$="b"THEN GO TO 1500
IF Z$="M"THEN GO TO 50
GO TO 1620

62

RECORD RETRIEVAL

One of the requirements of the Breakers Club Secretary was to retrieve
a record by name, membership number or handle. This is how it is done:

2500
2510

CLS
PRINT AT 10,0;"SPECIFYbONEbOFbTHEb
FOLLOWING:"

2520
2530
2540
2550

PRINT AT 12,0;"NAME:"
PRINT "MEMBERSHIPbNO:"
PRINT "HANDLE:"
PRINT AT 20,0;"ENTERbVALUEbORbNEWLINEb
FORbEACH"

2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670

INPUT N$
PRINT AT 12,5;N$
INPUT MS
PRINT AT 13,14;M$
INPUT H$
PRINT AT 14,7;H$
IF N$(1)="b"THEN LET N$(1)="*"
IF M$(1)="b" THEN LET M$(1)="*"
IF H$(1)="b" THEN LET H$(1)="*"
PRINT AT 20,0;"SEARCHINGbbbbbbbbbbbbbbbbbbbbbb'
FOR 1=1 TO N
IF R$(l, 1 TO 15)=N$OR R$(I,85TO 87)=M$OR
R$(l,88 TO 102)=H$ THEN GO TO 2715

2680
2690
2700
2710
2715
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810

NEXT I
CLS
PRINT AT 10,5;"NObRECORDbFOUND"
GOTO 2810
CLS
PRINT TAB 10;"RECORDbNO.b";l
PRINT AT 2,0;R$(I,1 TO 15)
PRINT R$(I,16TO 45)
PRINT R$(l,46 TO 65)
PRINT R$(l,66 TO 73)
PRINT R$(I,74TO 83)
PRINT R$(l,84)
PRINT R$(l,85 TO 87)
PRINT R$(I,88TO 102)
PRINT AT 20,0;"PRESSbNEWLINEbFORbANOTHERb
RECORD"

2820 PRINT AT 21,6;"ORbMbFORbMENU"

63

2830 INPUT Z$
2840 IF Z$="b"THEN GO TO 2500
2850 IF Z$="M" THEN GO TO 50
2860 GO TO 2830

Notice that it is helpful to the user to display a message to show that the
ZX81 is busy doing something, e.g. SEARCHING at line 2650.

FILE LISTING:

This section shows how to implement a full or selective file listing. In
the listing, only members' names and handles are displayed.

Options are:

(i) full listing
(ii) listing of members with a given interest
(iii) listing of members with membership numbers above a

certain figure

3000
3010
3020

CLS
PRINT TAB 10;"LISTbRECORDS"
PRINT AT 20,0;"DObYOUbWANTbAbFULLbLISTb
(Y/N)?"

3030
3040
3050
3060
3065
3070
3080
3090
3100
3110
3120

INPUT Z$
IF Z$="Y”THEN GO TO 3065
IF Z$="N"THEN GO TO 3120
GO TO 3030
CLS
FOR 1=1 TO N
SCROLL
PRINT AT 15,0;R$(I,1 TO 15);";";R$(1,88 TO 102)
NEXT I
GO TO 3350
PRINT AT 20,0;"SELECTbBYblNTERESTbORb
NUMBER?b"

3130
3140
3150
3160
3170
3180

INPUT Z$
IF Z$="I"THEN GO TO 3170
IF Z$="N" THEN GO TO 3260
GOTO 3130
PRINT AT 2,10,"INTERESTS”
FOR 1=1 TO 9

64

3190
3200
3210

PRINT l;".b";l$(I)
NEXT I
PRINT AT 20,0;"ENTERblNTERESTbCODEb
NUMBERbd-9)"

3220
3230
3240
3245
3250
3260

INPUT C$
GO SUB 9100
IF NOT OK THEN GO TO 3220
LET M$="999"
GO TO 3300
PRINT AT 20,0," LISTbMEMBERSbWITHbNUMBERSb
>?bbb"

3270
3280
3290
3295
3300
3310
3320

INPUT M$
GO SUB 9200
IF NOT OK THEN GO TO 3270
LET C$="*"
CLS
FOR 1=1 TO N
IF R$(l,84)oC$ AND R$(I,85TO 87)
<=M$THEN GOTO 3340

3330
3335

SCROLL
PRINT AT 15,0;R$(1,1 TO 15);":";
R$(l,88 TO 102)

3340
3350
3360
3370
3380

NEXT I
PRINT AT 2O,0;"PRESSbNEWLINEbFORbMENU"
PAUSE 5000
POKE 16437,255
GO TO 50

Summary

When the above routines have been entered, records can be added and
the system used. Once data has been entered, it is vital that the system
is always started by GO TO 50, since RUN automatically clears data.
Always SAVE the system on cassette whenever any file additions or
modifications have been made.

Although your own file processing application may not be identical to
the Betelgeuse Breakers Club system, the same principles apply and
many of the routines in this chapter may be used directly.

65

CHAPTER THREE - EDUCATION

3.1 THE ZX81 AS AN EDUCATIONAL TOOL

Introduction

At the time of writing Sinclair Research is operating a special offer to UK
schools whereby a complete 16K ZX81 system with printer can be
obtained at half-price. The offer came about in response to a Govern
ment-funded scheme to install a microcomputer in every secondary
school, by providing a 50% subsidy for the purchase of either an Acorn
Atom or a Research Machines 380Z.

Even without such a scheme for the Sinclair ZX80 this microcomputer
found a place in many educational institutions. Certainly the ZX81 will
prove even more popular. School students themselves will start to find
that it is within their budgets, or rather their parents'. The ZX81 has
many facilities that could make it a useful educational resource, but the
key facility in education is of course suitable software. In this chapter
we consider various types of educational computing and the design of
software to be used in the primary and secondary sectors.

Computer Studies

Many secondary schools use microcomputers largely for examination
subjects such as CSE or GCE 'O' level Computer Studies or GCE 'A'
level Computer Science. These subjects generally require students to
carry out substantial programming with a number of documented
programs being submitted as part of the course assessment.

Most schools equipped with microcomputers allow and encourage
students to get involved with programming. Even many primary
schools in the author's region are encouraging children to develop their
own programs with assistance from teaching staff.

In order for a microcomputer to be suitable for the learning of computer
programming by a range of school students and also for more compli
cated project work for external assessment, the machine must be very
flexible. The ZX81 scores well in this area and has a number of facilities
that make program entry and development much easier than on many

66

similar micros. In particular the entry of keywords by single key de
pressions and the automatic syntax checking of lines has been found to
aid beginners considerably. The ZX81's line editing capability is also
unusually sophisticated for a machine of its size.

For more advanced programming the ZX81 has many powerful number
handling and text-handling facilities permitting a range of applications
programs to be developed. Obviously the addition of 16K memory
extensions are vital for any degree of sophistication, but with this a great
deal of potential is available. Finally, the addition of a printer at around
£50 (projected at the time of writing) makes the system suitable for
project work where hard copy is vital : in fact the cheapness of the
printer is a considerable advantage over other systems.

On the negative side, ZX81 report codes are clumsy in program
development. It is a nuisance having to look up the meaning of codes
in order to find out why a program is going wrong. The tiny keyboard
with its multifunction keys, while being a novelty and definite aid for
those not familiar with keyboards, is a considerable disadvantage when
entering long and complicated programs.

General Subjects

Increasingly schools are buying computers for use as educational aids
in general subjects, rather than in computer studies. This seems to be a
more realistic and sensible approach for many secondary students since
it is much easier to recognise the value of computer technology if a
student is already aware of actual problems which he later discovers a
computer can help to solve. Similarly for primary schoolchildren a
background in using micros as tools similar to cassette recorders or
projectors enables them to encounter computers in their later educa
tional or working lives without having inbuilt prejudices against the
technology involved.

In this area therefore we are analysing the validity of the ZX81 as a
black-box (!) providing educational facilities. Obviously a crucial aspect
here is the quality and relevance of the software used, and since the best
educational software is written by subject teachers rather than by com
puter people, this chapter aims to aid the reader in producing good soft
ware. However we can make some general comments about ZX81
BASIC and its relevance in this area of use. Presentation of information
is very important in many subjects, and the graphics features of the

67

ZX81 are helpful although of limited resolution; similarly the SLOW
compute and display facility is very useful in displaying active processes
on the ZX81 screen. The inverse character displays available are also
good but it could be argued that the provision of lower case characters
would have been more helpful: it is a considerable disadvantage at the
primary level or in any language work to have to use upper case char
acters only.

Being able to interact with computer programs in realtime, using IN KEY:
can be an advantage in the educational area, and exercises in coordinatioi
can easily be designed using a limited number of keys. In fact the touch-
sensitive keyboard can easily be partitioned off by overlays, with the
active keys being labelled with special symbols according to the applicatii
currently in use.

Categories of Educational Programs

Before embarking upon the study of specific programs let us consider
what general categories of programs can be used in the primary and
secondary spheres to aid the teaching of non-computing subjects: this
chapter does not seek to develop programs for Computer Studies, or for
use in educational administration (see Chapter Two for ideas on this).

Demonstration or simulation programs are those with little student
involvement, either run by a teacher or without any more inputs. Such
programs are of limited value but can be used to demonstrate the facilitie
of a machine to an introductory group or at a more advanced level to
demonstrate some process that is difficult to explain or model otherwise,
eg: a dangerous chemical experiment might be shown by the reagents anc
products being displayed on the screen.

Programmed learning programs depend upon a program taking on to a
small extent the role of a teacher: typically a program might contain
teaching material on a topic and the student would respond to certain
questions posed by the program. His response would determine the
next block of material displayed by the program. Since these programs
often require the storage of a great deal of textual material to be effectivi
the value of such programs on the ZX81 is limited.

Test or quiz programs are a simpler variant of the previous category.
Here a bank of questions is held in a program and the student is given
each question in turn (or perhaps randomly from a large section of

68

questions) and has to reply by entering his answer on the keyboard.
The computer then responds by assessing his answer as right or
wrong, and if the latter a hint or further help may be given. At the
end a score appears. If the quiz is substantial the program may be
written so that the student may stop in the middle, SAVE everything
on cassette and restart from where he left off at a later time: the
ZX81 is one of the few microcomputers which makes this very easy.

Modelling programs simulate a real-life process so that the user can be
involved in the process without the accompanying problems or equip
ment. For example a complete list of chemical compounds with their
reactions to certain tests can be held on file and the student can then
be presented by the program with an unnamed compound and can
perform a series of tests on it until he can finally determine what it is —
all without getting his white coat dirty.

Games programs often have sound educational value, and many programs
at primary level can be written as games to achieve their goals. Even
quite stuffy programs such as maths quizzes can be written with a game
like flavour eg: a game of snakes and ladders in which the player has to
get a sum right before he can throw dice.

A selection of different types of programs appears in the remainder of
the chapter. Many 'standard' educational programs can be picked up
easily from text books, magazines or groups such as MUSE, and it is not
the author's intention to re-reproduce such material. Instead programs
have been chosen which particularly use the educational facilities of
the ZX81.

69

3.2 EDUCATIONAL PROGRAMS

MATHS STEPPING STONES (16K)

Background

The first program in this section has been chosen to illustrate how an
essentially simple and boring maths testing program can be made inter
esting and dynamic using realtime graphics.

Here is the simple and boring version:

10 LET S=0
20 FOR 1=1 TO 10
30 LET A=2+INT(RND*8)
40 LET B=2+INT(RND*8)
50 LET C=A*B
60 PRINT AT I,0;l;TAB 2;")b";A;"bXb?b=b";C;"b"
70 INPUT G
80 IF G=B THEN GO TO 110
90 PRINT AT l,15;"NO.bANSWERblSb";B

100 GO TO 120
110 PRINT AT I,15;"CORRECT" (inverse)
115 LET S=S+1
120 PRINT AT l,8;B
130 NEXT I
140 PRINT
150 PRINT "YOUbGOTb";S;"bRIGHTbOUTbOFb10"

There are 10 questions of the type 4 x ? = 32 and the data names used
are

S = number of questions answered correctly
I = question number
A)
B) the question posed in the form A X B = C
C)
G = user's attempt

There is nothing novel about this type of program and personal computei
magazines and books are full of such things. Let us now consider a
program which aims to test exactly the same principles but which does

70

it in a much more attractive way.

Description

The player is on one side of a river and a treasure chest is on the other
side. The chest contains magic gold coins which as time goes on are
turning into frogs: the longer the player takes to cross the river the more
frogs and less gold coins. The player crosses the river by means of five
stepping stones, but to reach each stepping stone he has to answer a
maths question. If the player has not crossed the river after twenty
questions the stones disappear and the player falls into the river. This
also happens if all the coins have turned into frogs.

Method

(iv)

Initialise score S to zero and coins CO to 100
Draw river scene on screen
For I from 1 to 20
a) choose A at random between 2 and 9
b) choose B at random between 2 and 9
c) Evaluate C as A times B
d) Display I and question as A x ? = C
e) If a key has been pressed:

1) If key = value of B then
(a) Display message
(b) Add 1 to S
(c) If S = 6 display message and stop
(d) Move man
(e) Go to (3) below

2) Display message
3) Pause
4) Repeat to (iii)

f) Subtract 1 from CO and display CO.
g) Go to (e) if no key pressed above.
h) If CO is zero, go to (iv) below.
i) Repeat to (iii)
Display message and stop.

71

Screen Format

Program Listing (16K)

10 LET S=0
20 LET CO=100
30 PRINT AT

,";CO
40 PRINT AT 2,29;"»BB"
50 PRINT AT 4,29;"B«B"
60 LET X=0
70 GO SUB 500
80 FOR 1=1 TO 20
90 LET A=2+INT(RND*8)

100 LET B=2+INT(RND*8)
110 LET C=A*B
120 PRINT AT 5,0;I;TAB 2;")b";A;"bxb?b=";C;
125 IF C<10THEN PRINT "b"
130 PRINT AT 5,15;"bbbbbbbbbbbbbbb"
140 LET K$= INKEY$
150 IF K$=""THEN GO TO 310
155 PRINT AT 5,8;B
160 IF CODE KS-28OB THEN GO TO 280
170 PRINT AT 5,15;"CORRECT"
180 LETS=S+1
190 IF S<>6 THEN GOTO 220
200 PRINT AT 6,0;"YOUbGOTb'';CO;"bGOLDbCOINSb+b";100

"bFROGS”
210 STOP
220 LET X=5*S
230 FORJ=0TO2

72

240 PRINT AT J,X—5;"bbb"
250 NEXT J
260 GO SUB 500
270 GO TO 290
280 PRINT AT 5,15;"NO.bANSWERblSb";B
300 PAUSE 300
310 LET CO=CO—1
315 IF CO=0 THEN GOTO 340
320 PRINT AT 3,29;"b";CO
325 IF CO<10 THEN PRINT "b"
326 IF K$=""THEN GOTO 140
330 NEXT I
340 PRINT AT 3,3;"........................... "
350 PRINT AT 6,0;"HARDbLUCKb—bYOUbWILLbGETbWET"
360 STOP
500 PRINT AT 0,X+1;"O"
510 PRINT AT 1,X;"BBB"
520 PRINT AT 2,X;"ElbK"
530 RETURN

List of Variables

S = number of stepping stone upon which man is standing
CO = number of gold coins left
X = column position of man
I = number of current question
A =)
B =) the question posed in the form A X B = C
C =)
J = loop counter

Comments

The child using the program need only press a single key to enter his
answer — the use of IN KEYS removes the need for NEWLINE at the end
of entries.

After each attempt the correct sum stays on the screen for six seconds
and the coin transmutation also temporarily halts. This period can be
cut short by pressing NEWLINE if required, since this terminates the
PAUSE. If the man reaches the chest then the game ends with a

73

message showing how many coins (and frogs!) he obtains.

To make the program easy to use a number of PRINT statements giving
instructions on play should be included at the beginning of the listing.

Exercise 3(a): The theme of the program — crossing a river to
a Treasure Chest — could be used in many different tasks other than a
maths quiz, or at varying levels of difficulty. Modify the program to
apply to a subject area of your choice.

SPELLING BIG WORDS (16K)

Description

This program is a spelling test which works by means of a word being
displayed with a missing letter and the child has to enter the letter within
a time limit. The word is displayed as four times normal size using
direct access to the monitor character table. Words are entered by the
teacher in a separate part of the program with the letter to be omitted
being entered as an inverse character. N.B. Words up to 8 letters.

Method

Teacher :

Child:

(i) For I from 1 to 10
Enter word number I

(ii) Stop

(i) Set score S to 0
(ii) For I from 1 to 10

a) Display word I, large with letter omitted
b) Set counter to 20
c) Display counter
d) If no key pressed

1) Decrement counter
2) Display counter
3) If counter = 0, display message & go to

(g)
4) Go to (d) above

e) If key pressed is correct
1) Add 1 toS
2) Display message
3) Go to (g)

74

f) Display message and show correct letter
g) Pause

(iii) Display score S and stop

Screen Format

Line 0

Lines
2-5

Line 7

3 TIME : 18

I CUPBO RD
Message Line

Program Listing (16K)

10 DIMW$(10,8)
20 PRINT TAB 7;"TEACHERSbSECTION"
30 PRINT "ENTERbWORDSbWITHbLETTERbTObBE"
40 PRINT "OMITTEDblNblNVERSEbFORM"
50 FOR 1=1 TO 10
60 PRINT AT l+5,5;"WORD";l;TAB 12;"=";
70 INPUT W$(l)
80 PRINT W$(l)
90 NEXT I
100 STOP
210 LET S=0
220 FOR 1=1 TO 10
225 CLS
226 FAST
227 PRINT AT 0,0;l
230 FOR K=1 TO 8
240 LET C=CODE W$(I,K)
250 IF C< 128 THEN GO TO 280
260 LET M$=CHR$(C—128)
270 LET C=0
280 FOR L=0 TO 7
290 LET P=PEEK(7680+C*8+L)
300 LET V=128

75

310 FOR J =0 TO 7
320 IF P<V THEN GO TO 350
330 PLOT 8*(K—1)+J,39—L
340 LET P=P—V
350 LET V=V/2
360 NEXT J
370 NEXT L
380 NEXTK
390 SLOW
400 LET X=20
410 PRINT AT 0,13;"TIME:20"
420 LET K$=INKEYS
430 IF KS<>""THEN GO TO 490
440 LET X=X—1
450 PRINT AT 0,18;X;"b"
460 IF X<>0 THEN GO TO 420
470 PRINT AT 7,0;"TOObSLOW”
480 GO TO 540
490 IF K$<>MS THEN GO TO 530
500 LET S=S+1
510 PRINT AT 7,©/'CORRECT."
520 GO TO 540
530 PRINT AT 7,©/'WRONG."
540 PRINT AT 7,10;"IT bWASb'';W$(l)
550 PAUSE 300
560 POKE 16437,255
570 NEXT I
580 CLS
590 PRINT AT 7,5;"YOUbSCOREDb";S;"bOUTbOFb10"

List of Variables

W$ = array holding ten eight-character words
I = number of word currently considered
S = score out of ten
K = letter of current word
C = code of letter in word
MS = missing letter in word
L = loop counter
P = value of location in character table
V = a power of two used to access bits in P

76

J = loop counter
X = time counter
K$ = key pressed by player

Comments

The large display of the word being tested helps to give the program con
siderable visual impact and the single key entry of answers is also useful.
The quiz proper is started by GOTO 210.
There is a delay while the ZX81 sets up the large word on the screen and
this takes place with a blank screen (uses FAST mode) in order that the
player only has a given time limit to choose his answer: he does not see
the word gradually appearing on the display. The routine is explained
on page 102. Display of large characters is applicable to many areas of
language teaching.

Exercise 3(b): Write statements to ensure that only valid entries
are permitted in the teacher's section.

SPOTS BEFORE THE EYES (IK)

Description

Here is a ZX81 version of a program which first appeared in 'The ZX80
Companion’ under the title of PATTERN RECOGNITION. The idea
behind the program is based upon Glenn Doman's book 'Teach Your
Baby Maths’, in which it is suggested that children can be taught to
recognise quite large numbers of dots (up to one hundred) with sufficient
practice. The program makes use of the PAUSE instruction to display
a collection of spots for a very short time before the user enters the
number. There are ten goes and a score is given at the end. The program
runs on a 1K ZX81.

Method

(i) Set scores S, T and U to zero
(ii) For go number G from 1 to 10

a) Choose R at random between 20 and 100
b) Display R spots for 2 seconds

77

c)
d)

Enter user's attempt N
If N=R (1)

(2)
display "CORRECT
add 1 to S

e)

f)
g)
h)

(3) go to (h) below
If |N—R| <5,(1) add 1 to T

(2) go to (g) below
If |N—R| <10, add 1 to U
Display "INCORRECT" and value of R
Wait for five seconds

Display scores.

Program Listing (1K)

10 LET S=0
20 LET T=0
30 LET U=0
40 FOR G=1 TO 10
50 LET R=20+ INT(RND*81)
60 FAST
70 FOR 1=1 TO R
80 PRINT "E";
85 IF RND<0.5 THEN PRINT "b";
90 NEXT I

100 PAUSE 100
105 POKE 16437,255
110 CLS
120 SLOW
130 PRINT "HOWbMANY?b";
140 INPUTN
145 PRINT N
150 IF NoR THEN GO TO 190
160 PRINT "YES" (inverse)
170 LET S=S+1
180 GO TO 250
190 IF ABS(N—R)>5 THEN GO TO 220
200 LET T=T+1
210 GO TO 240
220 IF ABS(N—R)> 10 THEN GO TO 240
230 LET U=U+1
240 PRINT "NO,b";R
250 PAUSE 250
255 POKE 16437,255

78

260 CLS
270 NEXT G
280 PRINT "SC0RE:bb";S,"bC0RRECT,b";T;"bWITHINb5,

bb";U;"bWITHINb10"

List of Variables

S =
T =
U =
G =
R =
I
N =

score correct
score within 5
score within 10
go number, 1—10
number of spots
loop counter
user's attempt

Comments

Note that the addition of line 85 ensures that the spots appear in a
random pattern — without it the user can use the length of the pattern
to estimate the number. The score given at the end in three parts
(correct, within 5 and within 10) gives the user a clear idea of his
performance.

The program would run perfectly well in FAST Mode, but the listing
above reverts to SLOW mode for the input section as a matter of the
author's preference! The display of the spots must be in FAST mode
so that the two second display of the spots is effective.

Exercise 3(c): Why is the ABS function included in lines 190
and 220 and what would happen if it was omitted?

GRAB THE GRUNGER (16K)

Description

No discussion of primary level educational programs is complete with
out looking at grid games, of the HUNT THE HURKLE variety. In such
programs a grid is displayed on the screen and an object (an imaginary
creature such as a Hurkle, or in this case a GRUNGER) is chosen to be
at a random position in the grid. The player then has a number of

79

guesses to find the object and in some variations the object may move or
even try and find the player. The educational value lies in that the player
has to specify grid positions by means of standard X and Y axis co-ordin
ates, and the program gives the player hints by means of specifying the
direction in which to move to find the object.

The following program uses a 15 x 15 grid in which the dreaded Grunger
is hiding. The player has five tries to find it and after each attemot thf
program tells the player in which direction to proceed, e.g. SOUTH
EAST. The game ends and repeats when the player finds the Grunger
or when he runs out of guesses.

Method

(i) Display instructions and grid with labelled axis
(ii) Choose random position of Grunger as (A,B)
(Hi) For go number I from 1 to 5

(a) Enter user's version of position, (X,Y)
(b) If (X,Y) = (A,B)

(1) Display CORRECT
(2) Go to (v) below

(c) Display direction to move
(iv) Show Grunger's position
(v) Wait
(vi) Go to (i)

Screen Format

GO NE
YOU HAVE 4TRIESTO FIND HIM

80

Program Listing

10

20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

250

260
270
280
290
500
510
520
530
540
550

PRINT TAB 5;"AbGRUNGERblSbHIDINGblN", TAB 8;" Ab
15bXb15 GRID", "YOUbHAVEb5bTRIESbTObFINDbHIM"
FOR I = 15 TO 1 STEP-1
PRINT TAB 6;I;TAB 9;"
NEXT I
PRI NT TAB 9;"123456789111111 bX”
PRINT TAB 18; "012345"
PRINT AT 10, 1;"Y"
LET A = INT (RND*15) + 1
LET B = INT (RND*15) + 1
FOR I = 1 TO 5
PRINT AT 2,9;6—I
PAUSE 500
POKE 16437,255
PRINT AT 21,0;"bbbbbbbbbbbbbbbbbbbb"
PRINT AT 21,0;l;")bX=";
INPUT X
IF X<1 OR X>15THEN GO TO 160
PRINT X;",Y=";
INPUT Y
IF Y<1 OR Y>15THEN GOTO 190
PRINT Y
PRINT AT 15-Y+3, X+8;l
IF X=A AND Y=B THEN GO TO 500
PRINT AT 0,5;"bbbbbbbbbbbbbbbbbbbbb'',TAB 8;
"bbbbbbbbbbbbbb"
PRINT AT 0,13;"GOb"; CHR$ (51*(Y<B) + 56*(Y>B));
CHR$(42*(X<A) + 60* (X>A))
NEXT I
PRINT AT 0,7;"SORRYb—blTbWASb",A;",";B
PRINT AT 15—B + 3,A + 8; "G"
GO TO 510
PRINT AT 0,12; "CORRECT"
PRINT AT 2,0;"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
PAUSE 9000
POKE 16437,255
CLS
RUN

81

List of Variables

A = x position of Grunger
B = y position of Grunger
X = user's guess, x position
Y = user's guess, y position
I = loop counter and go number

Comments

Notice how the number of tries left is shown at the top of the
screen, as part of the original playing instructions. To modify the
program for 1K, omit the display of the grid, i.e. lines 20—70, 220,280
and modify lines 140 and 150 to use screen line 4 instead of line 21.

Exercise 3 (d): What size grid can be designed for a 1K ZX81 t
include a grid display?

COPYCAT (IK)

Description

Here is a straight forward memory test. A sequence of letters is dis
played, one letter at a time, on the ZX81 screen and the player has to
repeat the sequence afterwards. The sequence starts at three letters bul
goes up to twenty! Letters are displayed eight times normal size for
clarity, using a PRINT AT version of the routine used in BIG WORDS
on page 74. At the end the player is given a mark showing the
maximum number of letters he has copied correctly. The program wor
on a 1K ZX81.

Method

(i) Generate 20 random letters in A$
(ii) For no. of letters I from 3 to 20

(a) For letter number J from 1 to I
1) Display letter J of A$, large
2) Wait for two seconds
3) Clear screen

(b) Enter user's version of sequence, X$

82

(c) If correct
1) Display "RIGHT SO FAR
2) Wait for five seconds

(d) If incorrect display message, correct sequence and score
(1-1)

(iii) Display "CONGRATULATIONS"

Program Listing (1K)

10 DIM A$(20)
20 FOR 1 = 1 TO 20
30 LET A$(l)=CHR$(INT(RND*27)+38)
40 NEXT I
50 FOR l=3TO 20
55 CLS
60 FOR J=1 TO I
70 LET C=CODE(A$(J))
80 FOR H=0TO 7
90 LET P=PEEK(7680+C*8+H)

100 LET V= 128
110 FOR G=0TO 7
120 IF P<V THEN GO TO 150
130 PRINT AT H,G;"B"
140 LET P=P—V
150 LET V=V/2
160 NEXTG
170 NEXTH
180 PAUSE 100
186 POKE 16437,255
190 CLS
200 NEXT J
210 PRINT "SEQUENCE=";
220 INPUT X$
225 PRINT X$
230 IF XoA(1 TO I) THEN GOTO 300
240 PRINT "RIGHT SO FAR ..." (inverse)
250 PAUSE 250
260 POKE 16437,255
270 NEXT I
280 PRINT "CONGRATULATIONS" (inverse)
290 STOP
300 PRINT "NOb—b";A$(1 TO l);".bYOUbGOTb";l-1

83

List of Variables

A$ = array holding 20 character sequence
I = loop counter and count showing length of current

sequence
J = counter showing character in current sequence
H = counter indicating appropriate number of byte in

character table
P = value of byte in character table
V = a power of 2
G = counter showing current bit being tested
X$ = player's version of sequence
C = character code of current character

Comments

By changing the randomising instruction at line 30 the program can
easily be modified to handle sequences of numbers, or even graphics
symbols.

Exercise 3(e): Change line 30 to produce sequences of digits
0 to 9 rather than letters.

PICKING PAIRS (16K)

Description

A useful exercise of memory whether by a child or an adult is the
game of Concentration, in which a number of cards are shuffled and I
out singly face down. The player then has to choose a pair of cards,
look at them, and if they are a pair of the same type (e.g. Aces, Thret
they are left face up. Otherwise they are turned face down again and
another pair chosen. This continues until all the cards are face up.
Clearly the player has to try and remember the positions of cards tha
has seen.

This program works on the same basis, using a grid sized 8x8 filled v
eight sets of the letters A to H. The player chooses a pair by specify!
a pair of column (X) and row (Y) positions. If an identical pair is foi
the letters stay on the screen, whereas if the letters chosen are differe

84

they disappear after ten seconds. Running totals of choices and pairs are
displayed on the screen. Entry of positions is done by single key
depressions, NEWLINE not being needed (i.e. INKEYS is used) and there
is built-in error checking.

Screen Format

Program Listing

5 DIM B(4)
10 DIM A$(8,8)
15 PRINT "SETTINGbUP";
20 FOR 1=1 TO 8
30 LET A$(I)="ABCDEFGH"
40 NEXT I
45 FOR 1 = 1 TO 100
47 IF l=10*INT(l/10) THEN PRINT
50 FOR J=1 TO 4
55 LET B(J)=INT(RND*8)+1
60 NEXT J
65 LET X$=A$(B(1),B(2))
70 LET A$(B(1),B(2))=A$(B(3),B(4))

85

75 LET A$(B(3),B(4))=X$
80 NEXT I
85 CLS
90 PRINT
95 FOR 1 = 1 TO 8

100 PRINT
105 PRINT "bBbBbBbBbBbBbBbBbB"
107 NEXT I
110 PRINT
115 PRINT AT 18,2;"1b2b3b4b5b6b7b8"
120 PRINT AT 0,2;"1b2b3b4b5b6b7b8"
130 FOR L=2 TO 16 STEP 2
140 PRINT AT L,0;9—L/2;TAB 18; 9-L/2
150 NEXT L
160 LET P=0
170 LET 0=0
180 PRINT AT 3,21/'CHOICES = 0"
190 PRINT AT 5,22/'PAIRS=0"
200 PRINT AT 10,29;"XbY”
210 PRINT AT 11,20;"SQUARE 1"
220 PRINT AT 13,20;"SQUARE 2"
230 PRINT AT 13,29;"bbb”
232 PRINT AT 11,29;"bbb"
235 LET L=11
240 LET C=29
250 GO SUB 600
260 LET X1 = K
270 LET C=31
280 GO SUB 600
290 LETY1 = K
300 IF CODE (A$(X1,Y1))>128 THEN GO TO 230
310 LET L=13
320 LET C=29
330 GO SUB 600
340 LET X2=K
350 LET C=31
360 GO SUB 600
370 LET Y2=K
380 IF CODE (A$(X2,Y2))> 128 THEN GO TO 230
390 PRINT AT 18-2*Y1,2*X1 ;A$(X1,Y1)
400 PRINT AT 18-2*Y2,2*X2;A$(X2,Y2)
410 LET 0=0+1

86

420 PRINT AT 3,29 ;0
430 IF AS(X1,Y1)=A$(X2,Y2) THEN GO TO 480
440- PAUSE 500
450 PRINT AT 18—2*Y1,2*X1;"b"
460 PRINT AT 18-2*Y2,2*X2;"b"
470 GO TO 230
480 LET P=P+1
490 PRINT AT 5,28;P
500 LET A$(X1,Y1)=CHRS(CODE(A$(X1,Y1))+128)
510 LET A$(X2,Y2)=CHRS(CODE(AS(X2,Y2))+128)
520 IF P<>32 THEN GOTO 230
530 PRINT AT 15,22;"WELLbDONE" (inverse)
540 PRINT AT 2,29;"QQ"
550 PRINT AT 4,29;"BB"
560 STOP
600 PRINT AT L,C;"?" (inverse)
610 LET K$= INKEYS
620 IF K$<=''8" AND K$>="1" THEN GO TO 650
630 PRINT AT L,C;"?"
640 GO TO 600
650 LET K=VAL KS
660 PRINT AT L,C;K
670 RETURN

List of Variables

B = array of four random numbers used to shuffle AS
AS = 8x8 array of characters
I = loop counter
J = loop counter
L = line number counter
C = column number counter
P = no. of identical pairs chosen
O = no. of choices made
X1,Y1 = coordinates of first member of pair
X2,Y2 = coordinates of second member of pair
K$ = value of key pressed
K = entry of x or y position

Comments
The program demonstrates several interesting features. The subroutines

87

at line 600 shows how an input prompt may be highlighted by a
'blinking' question mark and then accepted without NEWLINE, i.e.
using IN KEYS.

The eight sets of eight letters are initially put into AS in sequence and
then shuffled using one hundred random exchanges.

Exercise 3(f): How can you crash the program while it is waiting
for an x or y input? Modify the program to overcome this.

PRIMES (IK)

Background

Having considered a number of primary level programs we now look at
higher things. As mentioned above, the best educational programs are
written by subject specialists, so the author's intention with the rest of
the chapter is to illustrate some techniques for readers to apply to their
own areas. The topic chosen is mathematics, and the next two
programs are demonstrations to illustrate mathematical concepts or
techniques. An excellent reference for mathematical computer
programs is "A Collection of Programming Problems and Techniques”
by Maurer and Williams, published by Prentice-Hall, Inc.

There is a slight problem when doing complex maths on the ZX81, as
illustrated by

PRINT 20 - 0.000000001

which does not give 19.999999999 or even 20 but 52. Yes, there is a
bug in the ZX81 's floating point arithmetic which leaps out when handlir
numbers of considerably different magnitudes. Beware!

Description

The following program accepts any number greater than one and cal
culates and prints the number's factors if any, or indicates that it is a
prime number.

88

Method

(i) Enter number M
(ii) If M less than two, stop
(iii)Set N to M
(iv) Set divisor D to 2
(v) If N is divisible by D

a) Display D
b) Divide N by D
c) Go to (v)

(vi) Add 1 to D
(vii) If D less than M go to (v)
(viii) If N>1 display "PRIME"
(ix) Wait
(x) Goto(i)

Program Listing (1K)

5 CLS
10 PRINT "ENTERbNUMBERb";
20 INPUT M
30 IF M<2THEN STOP
40 LET N=M
50 PRINT N
60 LET D=2
70 IF N<>D*INT(N/D) THEN GOTO 100
80 PRINT D;"b";
85 LET N=N/D
90 GO TO 70

100 LET D=D+1
110 IF D<M THEN GO TO 70
120 IF N>1 THEN PRINT "PRIME"
130 IF N=1 THEN PRINT "AREbTHEbFACTORS"
140 PAUSE 9999
150 RUN

List of Variables

M = number as input
N = number divided by factor(s)
D = divisor

89

Exercise 3(g): Modify the above program so that when calculat
ing whether m is prime,the highest possible factor used is
the square root of m.

ITERATION (IK)

Description

The ZX81 is an excellent tool for demonstrating simple iterative tech
niques for the solution of equations. The Newton Raphson method is
used to solve an equation of the form

f(x) = 0

by taking an initial approximation x0 to the solution x=<*and successive
improving it by generating a sequence:

x x. x„ x_ ... o 1 2 3

which converges to the solution.

The iterative formula is

Xn + 1 = Xn - flxn)

f1(xn)

Where f'(x) is the differential of f(x).
We determine whether we have reached the solution by considering
successive approximations : if two approximations xj and xj+1 fulfill:

| xj—Xj+i |<e where e is a small constant then we are close
enough, e is chosen by the user according to the accuracy required.

The program accepts an equation of up to the fifth order and given an
initial approximation, calculates a solution.

Method

(i) Enter order of equation N
(ii) For counter I from N+1 to 1

90

(a) Enter coefficient A(I) (for ai+1 inai+1x‘)
(iii) Enter approximation XA
(iv) Calculate array B, the differential coefficients.
(v) Calculate and print next approximation XB using coefficients

in A and B
(vi) If XA-XB <0.00001 then

(a) Display solution
(b) Stop

(vii) Set XA to XB
(viii) Go to (v)

Program Listing

10 DIM A(6)
30 PRINT "ORDER=";
40 INPUT N
50 IF N>5 0R N<1 THEN GOTO 40
60 LET N=INT(N)
65 PRINT N
70 FOR l=N+1 TO 1 STEP —1
75 SCROLL
80 PRINT AT 1,0;"COEFFTbOFbX**";l—1
90 INPUT A(l)

100 PRINT A(l)
110 NEXT I
120 PRINT "APPROX=";
130 INPUT XA
140 PRINT XA
150 LET C=2
180 LET F=A(1)
190 FORI=2TON+1
200 LET F=F+A(I)*XA**(I —1)
210 NEXT I
220 LET DF=A(2)
230 FORI=2TON
240 LET DF=DF+A(I+1)*I*XA**(I —1)
250 NEXT I
260 LET XB=XA—F/DF
265 SCROLL
270 PRINT AT 1,0;"APPROXb";C;"=";XB
280 LET C=C+1
290 IF ABS(XA—XB)< 0.00001 THEN GO TO 320

91

300 LET XA=XB
310 GOTO 18Q
320 PRINT "SOLUTION=”;XB

List of Variables

A = array holding coefficients of powers of x
e.g. f(x) = a6x5 + a5x« +a4x3 + a3x2 + a2x + a!

N = order of f(x) i.e. highest power of x
I = loop counter
XA =)VD ! successive approximations
ad /

F = f(x) atXA
DF = f'(x) at XA
C = number of approximations

Comments

The program almost fills a 1K ZX81 and there is very little room left for
a screen display. Therefore if using a 16K machine, extend the number
of approximations displayed, i.e. change the PRINT AT instructions to
use a line around 15 or so.

Exercise 3(h): In what circumstances would line 260 terminate
with an error? Modify the program to overcome this.

THE QUIZ (16 K)

Description

At the beginning of the chapter we reviewed types of educational
programs. This program is a general purpose quiz in which the teacher
can set up a bank of questions and answers on any topic (and in any
language!) and the ZX81 then poses the questions to a student in the
form of an interactive quiz. There are two notable points about this
program: firstly a standard question format is entered by the teacher

e.g. WHAT IS THE FORMULA FOR

92

or TRANSLATE INTO SWAHI LI
or WHAT IS THE CAPITAL OF

and then pairs of question and answer keywords make up the remainder;
secondly, a student's answer is marked correct providing it contains the
answer keyword

e.g. if the answer keyword is OPTIC

then all the following responses are correct

OPTICAL ISOMERISM
OPTIC
OPTICALLY
CHANGES OPTICALLY
OPTICALLISH

Naturally enough, this is a 16K program.

Method

TEACHER: (i) Enter number of questions Q
(ii)

(¡¡¡)
(iv)

(v)

STUDENT: (i)

Enter maximum length L1 of question word
and L2 of answer word.
Enter form of question F$
For counter I from 1 to Q
(a) Enter question word number I into Q$(I)
(b) Enter answer word number I into A$(l)
(c) Store length of A$(l) in A(l)
Stop

Set score S to 0
(ii) For counter I from 1 to Q

(a) Display question F$ and question word
Q$(l)

(b) Enter student's response X$
(c) If X$ contains answer word A$(I)

1) Display CORRECT
2) Add 1 to 5
3) Go to (e) below

(d) Display WRONG & answer word A$(l)
(e) Repeat

93

(iii) Display score S

Program Listing

10 PRINT "NO.bOFbQUESTIONS"
20 INPUTQ
30 IF Q<5 OR Q >50 THEN GOTO 20
40 PRINT Q
50 PRINT "MAX.bLENGTHbOFbQbWORD=";
60 INPUT L1
70 IF L1<1 OR L1>30THEN GO TO 60
80 PRINT L1
90 PRINT TAB 15;"AbWORD=";

100 INPUT L2
110 IF L2<1 OR L2>30THEN GOTO 100
120 PRINT L2
122 DIM Q$(Q,L1)
124 DIM A$(Q,L2)
126 DIMA(Q)
130 PRINT "QUESTIONbFORMAT="
140 INPUT F$
150 IF F$="" THEN GOTO 140
160 PRINT F$
165 PAUSE 250
170 CLS
180 FOR 1=1 TO Q
182 SCROLL
185 SCROLL
190 PRINT AT 18,0;"Q";I;"=";
200 INPUT Q$(l)
210 PRINT Q$(l)
220 PRINT "A'';l
230 INPUT A$(l)
231 FOR J=L2TO 1 STEP-1
232 IF A$(l,J)o"b" THEN GO TO 234
233 NEXT J
234 LET A(I)=J
240 PRINT A$(l)
270 NEXT I
280 PRINT "ENDbOFbINPUT"
290 STOP
300 LET S=0

94

310 FOR 1=1 TO Q
320 CLS
330 PRINT l;")b";F$
340 PRINT Q$(l)
350 INPUT X$
355 PRINT X$
360 IF LEN X$<A(I) THEN GO TO 400
370 FOR J=1 TO LEN X$-A(l)+1
380 IF X$(J TO J+A(I)-1)=A$(I,1 TO A(l)) THEN GO TO 420
390 NEXT J
400 PRINT "NOb—bANSWERblSb";A$(l)
410 GOTO 440
420 PRINT "CORRECT” (inverse)
430 LET S=S+1
440 PAUSE 500
450 NEXT I
460 CLS
470 PRINT "SCORE:b";S;"bOUTbOFb";Q

List of Variables

Q = number of questions
L1 = maximum length of question words
L2 = maximum length of answer words
Q$ = questions
A$ = answers
A = array holding actual lengths of answer words
F$ = question format
X$ = student's answer
S = score

Comments

fhe teacher sets up a bank of questions and answers having started the
program by RUN. The student uses the program by GO TO 300, and
Jach of the questions appear in turn. Providing the student's response
:o a question contains the answer keyword, it is marked correct. A
score appears at the end.

Exercise 3(i): What is the purpose of line 360 and what would
happen if it was omitted?

95

CHAPTER FOUR - THE MONITOR

4.1 EXAMINING AND USING THE MONITOR

Introduction

This chapter aims to introduce readers to the way in which the 8K ROM
Monitor is organised, how it may be examined and how it may be used.
Much of the chapter is taken up by a listing of the contents of the ROM
in terms of tables of data and assembly language instructions. In order
to understand in any detail the workings of the Monitor a knowledge of
Z80 low level language is required, but readers without this knowledge
will find that parts of the chapter illustrating data tables in the monitor
ordescribing start addresses of Monitor routines will be useful. A good
book for learning about the Z80 is Rodnay Zacs' "Programming the
Z80". Readers should see Chapters 24 - 27 of the Sinclair Manual for
further background information.

Hexadecimal

As described in Chapter 24 of the Sinclair Manual, binary and hexadecim
numbering is generally used when discussing the contents of ZX81
memory locations. Consider a location containing the decimal number
28. In binary this is

0 0 0 1 1 1 0 0

27 26 25 24 23 22 21 2°

since 24 + 23 +22 = 16 + 8 + 4= 28
In hexadecimal we have

1C hex = 28 decimal

But taking each hex digit as four binary digits

1 C

0 0 0 1 1 1 0 0

thus showing how hexadecimal is a useful "shorthand" for binary.

96

In this chapter we will be using both decimal and hexadecimal numbers
to represent memory addresses and contents. Therefore a useful start is
a program to convert decimal numbers to hexadecimal.

The program uses an algorithm based upon a manual method of conver
sion. Consider for example 7654 decimal. If we successively divide this
by 16 and take the remainders we have

16 7654
16 478 remainder 6

16 29 remainder 14
16|1 remainder 13

0 remainder 1

Thus 7654 decimal

= 6 hex----------------------- .
= E hex ----------------
= D hex
= 1 hex

hex6

Here is the program:

5 DIM H$(4)
10 PRINT "NUMBER=";
20 INPUTC
25 IF C=0THEN STOP
30 GO SUB 500
40 PRINT C;"bbHEX=";
50 IF 0255 THEN PRINT H$(1);H$(2);
60 PRINT H$(3);H$(4)
70 PRINT
80 GO TO 10

500 LET D1=C
510 FOR l=4T0 1 STEP -1
520 LET D2=INT(D1/16)
530 LET H$(I)=CHR$(D1—16*D2+28)
540 LET D1=D2
550 NEXT I
560 RETURN

The subroutine at line 500 does the conversion to hexadecimal while the
first part of the program enters a number and then prints a hexadecimal
number of an appropriate size.

Conversion from hexadecimal to decimal is simpler.

97

10 PRINT "HEXbNUMBER=";
20 INPUT H$
30 IF H$=""THEN STOP
40 LET D=CODE H$(1)-28
50 FOR l=2 TO LEN H$
60 LET D=16*D + CODE H$(I)-28
70 NEXT I
80 PRINT H$;"b,DECIMAL=";D
90 PRINT

100 GOTO 10

Monitor Routines and Entry Points

The disassembled listing of the 8K monitor given in Section 4.2 gives
readers a chance to work out for themselves just how the ZX81 works.
To make the task a little bit simpler the following points will be helpful.
Addresses given below are in hexadecimal.

(i) The program starts are location 0000as in any Z80 system.
(ii) RST 0008 is the 'error report handling' entry point.

It is entered by using the instruction 'CF — RST 0008'
followed by a data byte for the required error., e.g. see
02F4 RST 0008
02F5 '0E'
which gives error 'F'.

(¡ii) RST 0010 is the character printing routine. The normal way
to print a character to the next position on the screen is to
load the A register with the appropriate character code
(including NEWLINE) and then call this routine by using the
instruction 'D7 — RST 0010.'

(iv) RST 0018 and RST 0020 are routines for collecting the next
character in a BASIC line.

(v) RST 0028 is the entry point for the 'floating-point calculator',
which starts at location 199C. (See note xxxvii).

(vi) RST 0030 is a routine that will make 'BC' spaces in the
variable area.

(vii) RST 0038 is the interrupt routine that handles the lines of
the T.V. display.

(viii) The routine at 0066 is the NMI routine that leads to a T.V.
display being formed following a NM interrupt in 'slow'
mode.

(ix) The main'key table'is at 007E to 00CB. There is a code for

98

each key in 'lower'case and in 'shift'.
(x) The key-codes for the 'function mode' are in the table from

00CC to 00F2.
(xi) The key-codes for the 'graphics mode' are in the table from

00F3to0110.
(xii) The command table is at 0111 to 01FB. Each keyword is

listed with its last letter inverted.
(xiii) The 'update routine' at 01 FC to 0206 is used by the LOAD

and SAVE command routines.
(xiv) The routines from 0207 to 02BA are used to produce the

T.V. display.
(xv) The keyboard scanning routine at 02BB to 02E6 is a very

useful routine. Each key of the keyboard gives a unique
key-value in the HL register pair. No key pressed gives
the value FFFF.

(xvi) The SAVE command routine is at 02F6 to 033F.
(xvii) The LOAD command routine is at 0340 to 03A7.
(xviii) The routine at 03CB to 03E4 is the RAM integrity check

routine that is carried out upon initialisation and
following a NEW command.

(xix) The main initialisation routine starts at 03E5, and is
followed by the operating system routines for handling the
'cursor'and forming LISTings.

(xx) The main command routine for the running of a BASIC
program is from 063E to 06DF.

(xxi) The keyboard decode routine at 07B4 to 07DB is also very
useful as it converts the key-values (in BC now) to the values
1—78 and forms the appropriate address, in HL, for a
given key in the main key table, (see note ix).

(xxii) The routine at 07F1 to 0868 is the character printing
routine used by RST 0010. (see note iii.)

(xxiii) The routine at 08F5 to 094A is concerned with expanding
the display file, in the case of a 'collapsed'display file.
The routine in effect sets the system variable 'DF—CC' to
a legitimate address.

(xxiv) The CLS command routine is at 0A2A to 0A5F.
(xxv) The PRI NT command routine is at 0ACF to 0BAE.
(xxvi) The PLOT/UNPLOT command routine is at 0BAF to

0C0D. The difference between the commands being
dependant on the current value of T—ADD R.

(xxvii) The SCROLL command routine is at 0C0E to 0C28.
(xxciii) The main syntax tables are at 0C29 to 0CB9. The first

99

part being a pointer table and the second part the actual
syntax table that gives the required syntax for each
command and the address of the 'command routine'.

(xxix) The BASIC interpreter starts at 0CBA.
(xxx) The FAST command routine is at 0F20to 0F27 and can

be simply called using 'CALL 0F20' to enter FAST mode,
or ensure the presence in FAST mode.

(xxxi) The SLOW command routine is at 0F28 to 0F2E and can
likewise be called by 'CALL 0F28'.

(xxxii) The 'Expression Evaluator' starts at location 0F52.
(xxxiii) The LET command routine is at 131D to 1404.
(xxxiv) The DIM command routine is at 1405 to 1483.
(xxxv) The routines between MCA and 1913 are concerned with

handling 'floating-point' numbers, e.g. the routine
'Evaluate to integer' is at 1586. Print 'Last value' is at
15D7, etc.

(xxxvi) The function table for the 'floating-point calculator' is at
1914 to 199B.

(xxxvii) The 'floating-point calculator' is at 199C to 1AA8.
(xxxviii) The various function routines are at 1AA9 to 1DFF.

e.g. CH R$ is at 1B8E to 1BA2, COS is at 1D3D to 1D47,
etc.

(xxxix) The 'character generator' is at 1E00 to 1FFF. This part
of the 8K ROM holds the 8*8 formats of the 64 characters
that can appear on the T.V. display.

Program Aids

A number of BASIC programs can be written to assist in the examination
of the Monitor, and particularly the data tables.

HEX DISPLAY

This program displays the contents of Monitor addresses in hexadecimal
starting at a specified address:

5 DIM H$(4)
10 PRINT "START=";
20 INPUTS
25 PRINTS
30 FOR A=STO 8191 STEP 8
35 SCROLL

100

40 LET C=A
50 GO SUB 500
60 PRINT AT 5,0;H$;''bbb";
70 FOR B=ATO A+7
80 LET C=PEEK(B)
90 GO SUB 500

100 PRINT H$(3TO 4);"b";
110 NEXT B
120 PRINT
130 NEXT A
140 STOP
500 LET D1=C
510 FOR 1=4TO 1 STEP-1
520 LET D2=INT(D1/16)
530 LET H$(I)=CHR$(D1 —16*D2+28)
540 LET D1=D2
550 NEXT I
560 RETURN

This works in 1K — for a 16K system change the PRINT AT statement
at line 60 to give a larger screen display.

CHARACTER DISPLAY

This program displays the contents of Monitor addresses as characters —
useful for some data tables.

10 PRINT "START=";
20 INPUTS
25 PRINTS
30 FOR A=S TO 8191
40 SCROLL
50 PRINT AT 15,0;A;"bbb";CHR$ (PEEK A)
60 NEXT A

The program is very handy for displaying the Key Table (locations 126
to 272) and the following Command Table (locations 273 to 507). As
described in the previous section the Key Table holds codes for the key
board keys in 'lower' case, in shifted form, in function mode and finally
in graphics mode. RUN the program with start address equalling 126
and the appropriate keyboard values will be shown. In the Command

101

Table we find each keyword with the last letter held in inverse form. To
show this, run the program with a start address of 273, or simply let it
run on after the Key Table.

CHARACTER GENERATOR DISPLAY

The last data table in the Monitor is the character generator held in
locations 7680 to 8191. This holds the formats for each of the 64
characters used on the ZX81 by means of eight bytes per character, each
byte consisting of 0's and 1's representing unshaded and shaded portions
respectively.

For example the letter R has character code 55. The portion of the
character table holding the format for R is locations 8120 to 8127.

i.e 7680 +(55 x 8) to 7680 + (55 x 8) + 7

The binary patterns in these locations are shown below

Location Contents
8120 00000000
8121 01111100
8122 01000010
8123 01000010
8124 01111100
8125 01000100
8126 01000010
8127 00000000

This represents

102

A routine to use the character table to display large characters has
already been utilised in Chapter Three, and is shown again below:

To display characters at four times size we use the PLOT statement.

10 PRINT "CHARACTERS';
20 INPUT A$
25 LET C=CODE AS
30 PRINT A$;"bCODE=";C;"ATbLOCb";7680i-C*8
40 FOR H=0 TO 7
50 LET P=PEEK(7680+C*8+H)
60 LETV=128
70 FOR G=0 TO 7
80 IF P<VTHEN GO TO 110
90 PLOT G,40—H

100 LET P=P—V
110 LET V=V/2
120 NEXTG
130 NEXT H

For eight times size we use the PRINT AT statement and this can help
illustrate the unshaded portions. We display the shaded portions using

and the unshaded by "ES". Modify the above by

80 IF P<VTHENGOTO 108
90 PRINT AT H+3, G;"B"

104 GO TO 110
108 PRINT AT H+3,G;'W'

and the character will appear black on a grey background.

4.2 MONITOR LISTING

The next eleven pages contain a disassembled listing of the ZX81 8K
ROM Monitor between addresses 0000 and 0CB9, that is, up to the end
of the syntax table. The rest of the Monitor has not been included
since much of it consists of the BASIC interpreter which is not
particularly interesting or usable.

A description of Monitor routines and tables appears in Section 4.1
and the listing should be studied in conjunction with this.

103

0000
0002

03 FO
01 FF 7F

OUT (FD), A
LD PC.7FFF

0067
0068

0005 C3 CB 03 JP 03CB 0068
0008 2A 16 40 LD HL.(4016) 0060
OOOP 22 18 40 LD (4018).HL 006E
OOOE 10 46 JR 0056 006F
0010 A7 AND A 0070
0011 C2 Fl 07 JP HZ,07F1 0071
0014 C3 F5 07 .IP 07F5 0072
0017 FF RST 38 0073
0018 2A 16 40 LD HL.(4016) 0074
0018 7E LD A,(HL) 0077
001C A7 AND A 0079
0010 CO RET HZ 007A
001E 00 HOP 007C
001F 00 HOP 007E
0020 CD 49 00 CALL 0049
0023 18 F7 JR 001C
0025 FF RST 38
0026 FF RST 38
0027 FF RST 38
0028 C3 9C 19 JP 199C
0028 Fl POP AF
002C 09 EXX
0020 E3 EX (SP).HL
002E 09 EXX
002F C9 RET
0030 C5 PUSH PC
0031 2A 14 40 LD HL,(4014)
0034 E5 PUSH HL
0035 C3 84 14 JP 1484
0038 00 OEC C
0039 C2 45 00 JP HZ.0045
003C El POP HL
0030 05 DEC B
003E C8 RET Z
003F CB 09 SET 3,C
0041 ED 4F LD R.A
0043 FR El
0044 E9 JP (HL)
0045 01 POP DF
0046 CB RET Z
0047 18 F8 JR 0041
0049 2A 16 40 LD HL.(4016)
004C 23 1HC HL
004D 22 16 40 LD (40Î6),HL
0050 7E LD A,(HL)
0051 FE 7F CP 7F
0053 CO RET HZ
0054 18 F6 JR 004C
0056 El POP HL
0057 6E LD L,(HL)
0058 FD 75 00 LD (IV >,L
0058 ED 7B 02 40 LD SP,(4002)
005F CO 07 02 CALL 0207
0062 C3 PB 14 JP 1488
0065 FF RST 38
0066 08 EX AF.AF'

3C
FA
28
08
C9
08
F5
C5
05
E5
2A
CP
76
03
00

28
21
00
EO
OD
CA
70
42
04
80
PI
26
07
37
13
31
31
28
04
2F
34
26
34
PE

IHC A
60 00 JP H.0060
02 JR Z,006F

EX AF,AF'
RET
EX AF,AF'
PUSH AF
PUSH PC
PUSH DE
PUSH HL

OC 40 LD HL,(4000
FC SET 7,11

HALT
FD DUT (FD).A
E9 JP (IX)

3F 30
38 26 38 29 28 2C 36 3C 2A 37 39 1D 1E 1F 20
1C 25 24 23 22 35 34 2E 3A 3E 76 31 30 2F 20
IB 32 33 27 OE 19 OF 10 E3 El E4 E5 E2 CO D9
DP DD 75 DA DE DF 72 77 74 73 70 71 OP 11 10
DC 79 14 15 16 08 OC IA 12 13 17 CO CE Cl 78
CP CC 01 02 C7 C8 C9 CF 40 78 78 78 78 78 78
78 78 78 C2 03 C4 06 05 78 04 CÓ C5 00 78 78
D7 41 08 OA 0? OA B? 81 82 07 84 06 01 02 07
05 77 78 85 03 03 BR 91 90 80 06 78 92 95 96
8F OP 8P 26 P9 39 26 A7 8F 28 34 29 AA 3B 26
31 2A B3 38 2E 03 28 34 88 39 26 P3 26 38 83
20 PB 26 39 P3 31 P3 2A 30 P5 2E 33 89 38 36
38 PC B3 26 27 PB 35 2A 2A PO 3A 38 87 38 39
8D 28 PD 37 80 33 34 B9 17 97 34 87 26 33 A9
94 1? 94 13 92 39 20 2A 83 39 84 38 39 2A P5
35 37 2E 33 B9 31 31 2E 38 B9 38 39 34 85 38
34 PC 28 26 38 B9 33 2A PC 38 28 37 34 31 81
34 33 89 29 2E 82 37 2A B2 28 34 P7 2C 34 39
2C 34 30 3A A7 2E 33 35 3A B9 31 34 26 A9 31
38 P9 31 2A 89 35 26 3A 38 AA 33 2A 30 89 35
30 AA 35 37 2E 33 B9 35 31 34 89 37 3A 83 38
38 AA 37 26 33 A9 2E AB 28 31 PB 3A 33 35 31
87 28 31 2A 26 P7 37 2A 39 3A 37 83 28 34 35
37 33 A9 2E 33 30 2A 3E 80 35 AE

104

(MFC 23 INC HI. 026C 46 ID B,(IIL)
OlFO LB EX rc,HL 0260 7B LD A,E
oirt 2A 14 40 LD Hl ,< 4014 > 026E FE FE CP FE
0201 37 SCF 0270 9F SBC A,A
0202 EO 52 SBC HL,DE 0271 06 1F LD B,1F
0204 FB EX DE.HL 0273 B6 OR (HI.)
0205 00 RET HC 0274 AO AHO B
0206 El F OP HL 0275 IF RRA
0207 21 30 40 LD HL,4030 0276 77 10 (HL),A
020A 7E LO A,(HL) 0277 03 FF OUT (FF),A
020B 17 RLA 0279 2A OC 40 LD HL,(4000
020C AE XOR (HL 1 027C CB FC SET 7,11
0200 17 RLA O27E CO 92 02 CALL 0292
020E 00 RET HC 0281 ED 5F LD A,R
020F 3E 7F LO A,7F 0283 01 01 19 LD BC,1901
0211 08 EX AF,AF' 0286 3E F5 LO A,F5
0212 06 11 LO 0,11 0288 CD 85 02 CALL 02B5
0214 03 FE OUT (FE),A 0280 20 DEC HL
0216 10 FE OJHZ 0216 02BC CD 92 02 CALL 0292
0218 03 FO OUT (FD),A 028F C3 29 02 JP 0229
021A 08 EX AF,AF' 0292 no El POP IX
0218 17 RLA 0294 FO 4E 28 10 C,(IY*28)
021C 30 08 JR HC.0226 0297 FO CB 3B 7E BIT 7,(IY*3B)
021E CO FE SET 7,(HL) 0298 28 OC .IR Z.02A9
0220 F5 PUSH AF 0290 79 10 A,C
0221 C5 PUSH BC 029E ED 44 HEC
0222 05 T USH OE 02A0 3C IHC A
0223 E5 PUSH HL 02 Al 08 EX AF,AF'
0224 18 03 JR 0229 02A2 03 FE OUI (FE),A
0226 CO 06 RES 6,(HL) 02A4 El POT HL
022« C9 RET 02A5 01 POP OE
0229 2A 34 40 LD HI.,(4034) 02A6 Cl POP PC
022C 28 DEC HL 02A7 Fl POP AF
0220 3E 7F LO A.7F 02A8 C9 RET
022F A4 AHO H 02A9 3E FC LD A,FC
0230 05 OR L 02AB 06 01 LD B,01
0231 7C LD A,H 02AD CO B5 02 CALL 0285
0232 20 03 JR HZ,0237 0200 2B DEC HL
0234 17 RLA 0201 E3 EX (SP),HL
0235 18 02 JR 0239 0282 E3 EX (SP),HL
0237 46 LO B,(HL) 0203 DO E9 JP (IX)
0230 37 SCF 02B5 EO 4F LD R,A
0239 67 LD H,A 02B7 3E DO LO A,00
023A 22 34 40 LD (4034),HL 0289 FB El
0230 00 RET HC 02BA E9 JP (HL)
023E CO BO 02 CALL 0200 0200 21 FF FF LD HL.FFFF
0241 ED 4B 25 40 LD BC,<4025) 02BE 01 FE FE 10 BC,FEFE
0245 22 25 40 LD (4025),HL 02C1 ED 78 IH A,(C)
0248 78 LD A,B 02C3 F6 01 OR 01
0249 C6 02 ADO A,02 02C5 F6 EO OR EO
0240 EO 42 SOC HL,BC 02C7 57 LO O.A
0240 3A 27 40 LO A,(4027) 02C8 2F CFI
0250 B4 OR H 02C9 FE 01 CP 01
0251 85 OR L 02CB 9F SBC A,A
0252 58 LD E,8 02CC 80 OR B
0253 06 08 LO 8,08 02CD A5 AND L
0255 21 38 40 LO HL,4038 02CE 6F ID L.A
0258 CD 66 RES O,(HL) 02CF 7C 10 A,H
025A 20 08 JR HZ,0264 0200 A2 AHT« 0
025C CB 7E BIT 7.(HI.) 02D1 67 LO H.A
025E CB C6 SET O.(HL) 0202 Cíí 00 RLC C
0260 C8 RET Z 0204 EO 78 IH A,(C)
0261 05 DEC B 0206 38 EO JR C.02C5
0262 00 HOP 0208 1F RRA
0263 37 SCF 0209 CB 14 RL H
0264 21 27 40 LD HL,4027 0200 17 RLA
0267 3F CCF 02DC 17 RLA
0268 CD 10 RL P 0200 17 RLA
026A 10 FE DJHZ 026A 02DE 9F SPC A,A

020F E6 18 AHO 18
02E1 C6 1F ADO A,1F
02E5 52 28 40 LD < 4028),A

105

0216 C9 RET 0360 79 LD A.C
02E7 FD CB 38 7E BIT 7,(IY*3B) 036C 20 03 JR NZ.0371
02EB CB RET Z 036E PE CP (HL)
02EC 76 HALT 036E 20 D6 JR N7.0347
02ED 03 FO OUT (FO),A 0371 23 INC HL
02EF FD CB 38 BE RES 7,(IY+3B) 0372 17 RLA
02F3 C9 RET 0373 7,0 FI JR HC,0366
O2F4 CF RST B 0375 FD 34 15 INC (IY+15)
02F5 OE CD LO C,CD 0378 21 09 40 LD HL.4009
02F7 A8 XOR 8 037B 50 LD D,B
02F8 03 INC BC 037C CD 4C 03 CALL O34C
02F9 38 F9 •IR C,02F4 O37F 71 LD (HL >,C
02EB EB EX DE.IIL 0380 CD FC 01 CALL 01FC
02FC 11 CB 12 LO 0E,12C8 0383 18 F6 JR 037B
o?rr CD 43 OF CALL OF43 0305 D5 PUSH OE
07,02 30 2E JR NC,0332 0386 1E 94 LO E,94
07,04 10 FE DJHZ 0304 0308 06 1A LO B,1A
0306 IB DEC DE 038A 10 DEC E
0307 7A LO A.D 03BB DB FE IN A,(FE)
0308 B3 OR E 038D 17 RLA
07,09 20 F4 JR NZ.02FF 038E CB 78 BIT 7.E
0308 CD 1E 03 CALL 031E 0390 78 LD A,E
030E CB 7E BIT 7,(HL) 0391 38 F5 JR C.0388
0310 23 INC HL 0393 10 F5 DJNZ 038A
0311 20 F8 JR Z.030P 0395 DI POP DE
0313 21 09 40 LO 11,4009 0396 20 04 JR NZ,039C
0316 CD 1E 03 CALL 031E 0398 FE 56 CP 56
0319 CD FC 01 CALL 01FC 039A 30 82 JR NC.034E
031C 18 F8 JR 0316 039C 3E CCF
031E 5E LD E,(HL) 039D CB 11 RL C
031F 37 SCF 039F 30 AD JR NC.034E
0320 CB 13 RL E 03A1 C9 RET
0322 CB RET Z 03A2 7A LD A,D
0323 9F SBC A,A 03A3 A7 AND A
0324 E6 05 AND 05 03A4 28 BB JR Z,0361
0526 C6 04 ADO A,04 07,A6 CF RST 8
0320 4F LD C,A 03A7 OC INC C
0329 D3 FF OUT (FF),A 03AB CD 52 OF CALL 0F52
0328 06 23 LD B,23 03AB 3A 01 40 LD A.(4001)
0320 10 FE DJHZ 032D 03AE 87 AOD A,A
032F CD 43 OF CALL 0F43 03AE FA 9A OD JP M,0D9A
037,2 30 72 JR NC,03A6 0382 E1 POP HL
07,34 06 1E LD B.1E 03R3 DO RET NC
0336 10 FE DJHZ 0336 O3B4 E5 PUSH HL
037,8 OD DEC C 03B5 CD E7 02 CALL 02E7
07,39 20 FE .IR NZ.0329 03B8 CD F4 13 CALL 13F4
07.7,8 A7 AND A 03BB 62 LD H,0
033C 10 FD OJNZ 0338 03BC 68 LD L,E
037,E IB EO .IR 0320 03BD OD DEC C
0340 CD AB 03 CALL 03A8 03BE F8 RET M
0343 CB 12 RL 0 03PF 09 AOD HL,PC
0345 CD OA RRC 0 03C0 CB FE SET 7,(HL)
0347 CD 4C 03 CALL 034C 03C2 C9 RET
034A 18 EB JR 0347 03C3 CD E7 02 CALL 02E7
034C OE 01 LD C,01 03C6 FD 4B 04 40 LD PC,(4004)
034E 06 00 LD B.00 03CA OP DEC PC
0350 3E 7F LD A,7F 07.CD 60 LD II.B
0352 08 FE IN A,(FE> 03CC 69 LD L.C
0354 D3 FF OUT (FF),A 07,CD 3E 3F LD A.3F
0356 1F RRA 03CF 36 02 LO (HL),02
0357 30 49 JR HC.03A2 03D1 2B DEC HI
0359 17 RIA 0302 BC CP H
035A 17 RLA 03D3 20 FA JR NZ.03CF
0358 38 28 JR C,0385 03D5 A7 AHD A
0350 10 El DJNZ 0350 03D6 ED 42 SBC HL.BC
035F El POI' AE 03D8 09 AHD HI .BC
0360 BA CE D 0309 23 INC HI
0361 02 F5 03 JR HC.03E5 03DA 30 06 JR NC.03E2
0364 62 LD H,D 03DC 35 DEC (HI.)
0365 6P LD L,E 03DD 28 03 JR Z,03E2
0366 CD 4C 03 CALL 034C 03DF 35 DEC (HL)
0369 CP 7A BIT 7.0 03E0 28 E3 JR Z,03D5

106

03E2 22 04 40
03E5 2A 04 40
03E8 2B
03E9 3« 3E
03ED 2B
03EC F9
03E0 2B
03EE 2B
OJEE 22 02 40
03F2 3E 1E
03F4 EO 47
03F6 ED 56
03F8 FD 21 00 40
03FC FD 36 3B 40
0400 21 70 40
0403 22 OC 40
0406 06 19
0408 36 76
0400 23
040B 10 FB
0400 22 10 40
0410 CO 96 14
0413 CD A9 14
0416 CD 07 02
0419 CO 20 00
041C 2A OA 40
041F FO 5B 23 40
0423 A7
0424 EO 52
0426 EB
0427 30 04
0429 19
042A 22 23 40
0420 CD 08 09
0430 28 01
0432 EB
0433 CD 3E 07
0436 FO 35 1E
0439 20 37
043B 2A OA 40
043E CD 08 09
0441 2A 16 40
0444 37
0445 ED 52
0447 21 23 40
044A 30 OB
O44C EB
0440 7E
04 1E 23
O44F ED AO
0451 12
0452 18 C5
0454 21 OA 40
0457 5E
0458 23
0459 56
045A E5
0458 EB
045C 23
045D CD 08 09
0460 CD BB 05
0463 El
0464 FD CB 20 6E
0468 20 08
O46A 72
046B 2B
O46C 73
0460 18 AA
O46F CD A9 14
0472 2A 14 40
0475 7E
0476 FE 7E

LO (4004),HL
LO HL,(4004)
DEC HL
LD (HL),3E
DEC HL
LD SP,HL
DEC HL
DEC HL
LO (4002),HL
LD A,1E
LD I,A
INI
LO IY.4000
LD (IY+3B),40
LO HL,4O7O
LO (4000.HL
LD 8.19
LD (Hl 1,76
INC HL
DJHZ 0408
LD (4010 MIL
CALL 1496
CALI 14A9
CALL 0207
CALL 0A2A
LD HL,(400A)
LD DE,(4023)
AND A
SBC HL.DE
EX DE,HL
JR NC.042D
ADD NL,OE
LD (4023),HL
CALL 0908
JR Z,0433
EX DE,HL
CALL 073E
DEC (IY*1E)
JR HZ,0472
LO HL,(400A)
CALL 0908
LD HL,(4016)

SBC HL,DE
LD HL,4023
JR HC.0457
EX DE,HL
LO A.(HL)
INC HL
LDI
LD (DE).A
JR 0419
LD HL.400A
10 E.(HL)
INC HL
LD D,(HL)
PIISH HL
EX DE,HL
INC HL
CALL 09D8
CALL 05BB
POP HL
BIT 5,(IY*20)
JR NZ.O472
LD (HL).O
DEC IR
LO (HL),E
JR 0419
CALL 14A9
LO HL,(4O14)
LD A,(HL)
CP 7E

0478 20 08
O47A 01 06 00
0470 CD 60 OA
0480 18 F3
0482 FE 76
0484 23
0485 20 EE
0487 CD 37 05
048A CO 1F OA
0480 2A 14 40
0490 FD 36 00 FF
0494 CO 66 07
0497 FD CB 00 7E
O49B 20 24
0490 3A 22 40
04A0 FE 18
04A2 30 ID
O4A4 3C
04A5 32 22 40
04A8 47
04A9 OE 01
04AB CD 18 09
04AE 54
04AF 50
04B0 7E
04B1 28
04B2 BE
04B3 20 FC
04B5 23
04B6 EB
04B7 3A 05 40
04BA FE 4D
04BC OC 50 OA
04BF 18 C9
04C! 21 00 00
04C4 22 18 40
O4C7 21 38 40
04CA CD 7E
04CC CC 29 02
04CF CB 46
0401 28 FC
0403 EO 48 25 40
0407 CD 48 OF
040A CD BD 07
0400 30 93
04DF 3A 06 40
04E2 3D
04E3 FA 08 05
O4E6 20 OF
04E8 32 06 40
04EB 10
04EC 7B
04E0 D6 27
04EF 38 01
04F1 5F
04F2 21 CC 00
04F5 18 OF.
04F7 7E
04FB FE 76
04FA 28 2F
04FC FE 40
04FE CB FF
0500 7,8 19
0502 21 C7 00
0505 19
0506 I8 OD
0508 7E
0509 FD CB 01 56
0500 20 07
050F C6 CO
0511 TE E6
0513 30 01

JR NZ,O4D2
LD BC.0006
CALL 0A60
JR 0475
CP 76
INC HL
JR NZ.0475
CALL 0537
CALL 0A1F
LO HL,(4014)
LO (IY),FF
CALL 0766
BIT 7.ÍIY)
JR HZ,04CI
LD A,(4022)
CP 18
JR NC,O4C1
INC A
LD (4022).A
LD B,A
LD C,01
CALL 0918
LD D,H
LO E,L
LO A,(HL)
DEC HL
CP (HL)
JR NZ.04B1
INC HL
EX OE,HL
LD A,(4005)
CP 4D
CALL C,0A50
JR O48A
LD HL.OOOO
LD (4018).HL
LD HL,4O3B
BIT 7,(1«.)
CALL Z.0229
BU O,(Ht)
JR Z,04CF
LO BC,(4O25)
CALL 0F48
CALL 07BD
JR NC.0472
LD A,(4006)
DEC A
JP N,0508
JR NZ,O4F7
LO (4006),A
DEC E
LO A,E
SIJB 27
JR C,04F2
LO E,A
LO HL.OOCC
JR 0505
LD A,(HL)
CP 76
JR Z.052B
CP 40
SET 7.A
JR C.051R
LD III .00C7
ADD Hl .HE
JR 0515
LD A,(IIL)
BIT 2.(IY*01>
IR HZ.0516

ADD A.CO
CP E6
«JR NC.0516

107

HL.DE

u:hs ED A,(HL) 0594 ED 58 14 40 LO DE,(4014)
0516 FE FO CP FO 0598 1A LD A,(DE)
05)8 FA 20 05 JP PE,052D 0599 FE 7F CP 7F
0518 5F LO E,A 059B CO REI HZ
051C CD 37 05 CALL 0537 059C DI POP DE
051F 78 LD A,E 0590 18 EA JR 0589
0320 CD 26 05 CALL 0526 059F 2A OA 40 LO HL,(400A)
0523 C3 72 04 JP 0472 05 A 2 CD 08 09 CALL 0908
0526 CD 98 09 CALL 099B 05A5 EB EX DE,HL
0529 12 LD (DE),A 05A6 CD 88 05 CAIL 05B8
052A C9 REI 05A9 21 08 40 LD HL,400B
0528 3E 78 LD A,78 05AC C3 64 04 JP 0464
0520 5F LD E,A 05AT 78 LD A.E
052E 21 82 04 LD HL,0482 0580 E6 07 AHD 07
0531 19 ADO 11.,DE 05B2 32 06 40 LD (4006),A
0532 19 ADD HL,D€ 05D5 18 E6 JR 0590
0533 4E LD C,(HL) 05B7 E8 EX DE.HL
0534 23 IHC HL 0588 li C2 04 LD DE,04C2
0535 46 LD B,(HL) 0588 7E LD A,(IIL)
0536 C5 PUSH DC 05BC E6 CO AHD CO
0537 2A 14 40 LD HL.(4014) 05BE 20 F7 JR HZ,O5B7
053A FD CB 2D 6E BIT5,(IY*20) 05C0 56 LD D,(HL)
05 3E 20 16 JR HZ.0556 05C1 23 IHC HL
0540 ro CB 01 96 RES 2,(IY«01) 05C2 5E LD E,(HL)
0544 7E LD A,< l«L > 05C3 C9 REI
0545 FE 7F CP 7F 05C4 CO 1F OA CALL 0A1F
0547 C8 REI Z 05C7 21 6F 04 LD HL,046F
0548 23 IHC HL 05CA E5 PUSH HL
0549 CD 84 07 CALL O7B4 05CB FD CB 20 6E BIT 5,(IY«2D>
054C 28 F6 JR Z,O544 05CF CO RET NZ
054F FE 26 CP 26 0500 2A 14 40 LD HL,(4014)
0550 38 F2 JR C,0544 0503 22 OE 40 I O (400E),HL
0552 FE DE CP DE 0506 21 21 18 LD HL.1821
0554 28 EA JR Z,0540 0509 22 39 40 LO (4039),HL
0556 ro CB 01 D6 SET 2,(IY*01) 05DC 2A OA 40 LD HL,(400A)
055A 18 E8 JR 0544 050F CD 08 09 CALL 09D8
055C 01 01 00 LD BC,0001 05E2 CD DB 05 CALL 05BB
05?F C3 60 OA JP 0A60 05E5 7A LD A,D
0562 9F SBC A,A 05E6 B3 OR E
05JS3 05 DEC B 05E7 C8 RET Z
0564 54 LD D,H 05E8 28 DEC HL
0565 04 INC 8 05E9 CD A5 OA CALL 0AA5
0566 76 HALT . 05EC 23 IHC HL
0567 05 DEC 8 05FD 4E LD C,(HI)
0568 7F LD A,A 05EE 23 IHC HI
0569 05 DEC 8 05EF 46 LD B,(HL)
056A M XOR A 05FO 23 INC HL
056B 05 DEC B 05F1 ED 58 OE 40 LD DE,(400E)
056C C4 05 OC CALL HZ,0C05 05F5 3E 7F LO A,7F
056» 06 8B LD B,8B 05F7 12 LD (DE),A
0571 05 DEC 8 051 8 13 INC DE
0572 AF XOR A 05F9 E5 PUSH HI.
0573 05 DEC 8 05FA 21 1D 00 LO HL,001D
0574 AF XOR A 05FD 19 ADO HL.OE
0575 05 DEC B OSTE 09 ADD HL,BC
0576 CD 93 05 CALL 0593 05FF ED 72 SBC HL,SP
0579 7E LD A,(HI) 0601 FI POP HL
O57A 36 7F ID<Hl>,7F 0602 DO RET NC
0570 23 INC HL 0603 ED 80 LDIR
0578 18 09 JR 0588 0605 EB EX DE,HL
057F 23 IHC IM 0606 DI POP DE
0580 7E LD A,(HL) 0607 CD A2 14 CAIL 14A2
0581 FE 76 CP 76 060A 18 91 JR 059D
0583 28 18 JR Z,059D 060C CD 1F OA CALL 0A1F
0585 36 7F LO (HL),7F 060F 21 72 04 IO HL.0472
0587 28 DEC HL 0612 FD CB 20 6E BIT 5.(IY«2D>
0588 77 LD (HL),A 0616 20 11 .IR NZ.0629
0589 18 98 JR 0523 0618 2A 14 40 10 HL,(4014)
0588 CD 93 05 CALL 0593 0618 7F LD A,(III)
058E CD 5C 05 CALL 055C 061C FE FF CP FF
0591 18 F6 JR 0589 061F 28 06 JR Z.0626
0593 28 DEC HL 0620 CD.E2 08 CAIL 08F?

108

vt>; x tu 26 06 CALL 0A2A 06CF. 20 01 IK H4.06D1
0626 21 19 04 ID HL.0419 06D0 OB DEC BC
0629 F5 PUSH HL 0601 CD FB 07 CALL 07EB
0626 CD 06 OC CAI L OCOA 06D4 3E 18 LD 6,18
0620 El POP HL 06D6 07 RST 10
062E CO 37 05 CAIL 0537 06D7 CD 98 OA CALI 0698
0631 co 5C 05 CALL 055C 06DA CD A9 14 CALL 14A9
0634 co 73 06 CALL 0673 0600 C3 Cl 04 JP 04C1
0637 20 15 JR HZ,064E 06E0 EO 43 OA 40 ID (400A),BC
0639 70 LD 6,B 06E4 2A 16 40 LD HL,(4016)
0636 01 OR C 06E7 EB EX DE,HL
063P C2 EO 06 JP HZ,06E0 06E8 21 13 04 LD Hl.0413
063E 00 DEC OC 06EB E5 PUSH HL
063F 00 DEC OC 06EC 2A 1A 40 LO HL.(401A)
0640 ED 43 07 40 LD (4007),BC 06EF ED 52 SBC HL,DE
0644 ED 36 22 02 LD (IY*22),02 06F1 E5 PUSH HL
0648 ED 50 OC 40 LD DE,(400C) 06F2 C5 PUSH BC
064C 18 13 JR 0661 C6F3 CO E7 02 CAI L 02E7
064E FE 76 CP 76 06F6 CD 26 06 CALL 0A2A
0650 28 12 JR Z,0664 06F9 El POP HL
0652 ED 40 30 40 LD BC,(4030) 06FA CD 08 09 CAIL 09D8
0656 CD 18 09 CALL 0918 06FD 20 06 JR HZ,0705
0659 ED 50 29 40 LD DE,(4029) 06FF CO F2 09 CALL 09F?
0650 ro 36 22 02 LD (IY+22),02 0702 CD 60 OA CALI 0660
0661 DF RST 18 0705 Cl POP BC
0662 FE 76 CP 76 0706 79 I D A,C
0664 CA 13 04 JP Z,0413 0707 3D DEC A
0667 FD 36 01 80 LO (IY+01),80 0708 BO OR 8
0660 FB EX DE,HL 0709 CO RET Z
066C 22 29 40 LD (4029),HL 070A C5 PUSH BC
066E re EX DE,HL 070B 03 IHC PC
0670 CD 4D 00 CALL 004D 070C 03 INC PC
0673 CD Cl OC CALL 0CC1 0700 03 IHC BC
0676 ro CO 01 BE RES 1,(IY+01) 070E 03 INC BC
0676 3E CO LO A,CO 070F 2B DEC HL
067C TO 77 19 LD (IY*19 >,A 0710 CD 9E 09 CALL 099E
067F CD 9F 14 CALL 149F 0713 CD 07 02 CALL 0207
0682 FD CO 20 AE RES 5,(IY+20) 0716 Cl POP BC
0606 FD CO 00 7E BIT 7,(IY) 0717 C5 TUSH BC
06BA 28 22 JR Z,06AE 0718 13 IHC DE
060C 26 29 40 LD HL,(4029) 0719 26 1A 40 LD HL,(4016)
068F 66 AHO (HL) 071C ?B DEC HL
0690 20 1C JR NZ,06AE 0710 ED B8 LOOR
0692 56 LD D,(HL) 071F ?A OA 40 LD HL,(400A)
0693 23 INC HL 0722 EB EX DE,HL
0694 5E LD E,(HL> 0723 Cl POP BC
0695 ED 53 07 40 LO (4007),DE 0724 70 ID (Hl).P
0699 23 INC HI. 0725 2B DEC HL
0696 5E LO E,(HL) 0726 71 ID (HL),C
0690 23 INC HL 0727 2B DEC HL
069C 56 LD D,(HL) 0728 73 LD (HL).E
0690 23 IHC HL 0729 2B DEC HL
069E ED EX DE.HI 07 2A 72 ID (HL).D
069F 19 ADD HL.DE 0728 C9 RET
0660 CD 43 OF CALL 0F43 07 ?C FD CP 01 CE SET l.(IY*01)
06A3 38 C7 JR C,066C 0730 CO A7 OE CALL 0EA7
0665 21 00 40 LD HL.4000 0733 78 m A.B
0660 CO 7E BIT 7.(HL) 0734 E6 3F AND 3F
0666 28 02 JR Z.06AE 0736 67 LD II. A
066C 36 OC LD (HL),OC 0737 69 LD L,C
066F FD CO 3B 7E PIT 7,(IY<38> 0738 22 06 40 LD (400A),HL
068? CC 71 OB CALL Z.0071 0738 CD 08 09 CALL 0908
0605 0! 21 0! LO BC.0121 073E IE 00 LO E.00
0600 CD 18 09 CALI 0918 0740 CD 45 07 CALL 0745
0600 36 00 40 LD A,(4000) 0743 18 FB JR 0740
0/.0E ID 4D 07 40 LD OC,(4OO7) 0745 ED 4P OA 40 ID PC,(400A)
06C2 3C IHC A 0749 CD EA 09 CALI 09EA
06C3 28 OC JR Z,O6D1 07 4C 16 92 I D D,92
06C5 FE 09 CP 09 O74E 28 05 JR Z.0755
06C7 20 01 JR HZ,06CA 0750 11 00 00 LD DE,0000
06C9 03 IHC BC 0753 CB 13 RL E
06CA ED 43 ?B 40 LO (402B),PC 0755 rn 73 IE LD (1Y+1E).E

109

HL.DE

0758 7E LO A,(HL) 0/1*5 21 /U VO
0759 FE 40 CP 40 0708 5F
075B CI POP BC 0709 19
075C DO RET HC 07UA 37
0750 C5 PUSH BC 07DB C9
075E CO A5 OA CALL 0AA5 07DC 7R
0761 23 IHC III 0700 A7
0762 7A LO A,D 07TC F8
076?. 07 RST 10 07DF 18 10
0764 23 INC HI. 07E1 AF
0/65 23 INC IH 07E2 09
0766 22 16 40 LD (4016),HL 07E3 3C
0769 CO CD 01 C6 SET 0,(IY«01> 07E4 3B FC
0760 ED 48 18 40 LO BC,(4018) 07E6 ED 42
0771 2A 16 40 LD HL,(4Ó16> 07E6 3D
0774 A7 AHD A 07E9 28 FI
0775 ED 42 SDC HL,BC 07F8 1E 1C
0777 20 03 JR NZ,O77C 07ED 83
0779 3E B8 LD A,88 07EE A7
077B D7 RST IO 07EF 28 04
O77C 2A 16 40 LD HL,(4016) 07F1 FD CB 01 86
077F 7E LD A,(HL) 07F5 D9
0700 23 INC HL 07F6 E5
0781 CD B4 07 CALL O7B4 07F7 FO CD 01 4E
0784 22 16 40 LD (4016),HL 07F8 20 05
0787 28 E4 JR Z.076D 07FD CD 08 08
0709 FE 7F CP 7F 0000 18 03
0780 28 10 JR Z.079D 0H02 CO 51 08
0700 FE 76 CP 76 0805 FI
o?or 28 50 JR Z,07EE 0806 D9
0791 CB 77 BIT 6,A 0807 C9
0793 28 05 JR Z,079A 0808 57
0795 CD 48 09 CALL 0948 0809 ED 4B 39 40
0798 18 03 JR 0760 0800 79
079A 07 RST 10 OBOE FE 21
G79B IH DO JR 076D 0810 28 1A
0790 3A 06 40 LD A,(4006) 0812 3E 76
07A0 06 AB LD E,AB 0814 BA
07A2 A7 AHD A 0815 28 30
O7A3 20 05 JR NZ,07AA 0817 2A OE 40
07A5 3A 01 40 LD A,(4001) 081A BE
07A8 06 80 LO 8,80 0816 7A
07AA 1F RRA 081C 20 20
07AB 1F RRA 081E OD
07AC E6 01 ANO 01 081F 20 19
07 AE 80 ADD A,B 0821 23
07AF CO F5 07 CALL 07F5 0822 22 OE 40
07B? 18 89 JR 0760 0825 OE 21
O7B4 FE 7E CP 7E 0827 05
07B6 CO RET HZ 0828 ED 43 39 40
0707 23 INC HL 0R2C 78
O7B8 23 INC HL 0820 FD BE 22
0709 23 INC HI. 0830 28 03
07BA 23 INC HL 0832 A7
0708 23 INC HI 0833 20 DD
07BC C9 RET 0835 2f 04
07BD 16 00 LD 0,00 0837 C3 58 00
07BT CB 28 SRA 8 08 3A CD 9B 09
07C1 9F SDC A,A 0830 E8
07C2 F6 26 OR 26 08 3f 77
O7C4 2E 05 1D L,05 0Q3F 23
O7C6 95 SI® 1 0840 22 OE 40
O7C7 85 ADD A,l 0843 FU 35 39
07C8 37 SCF 08 46 C9
07C9 CD 19 RR C OH 4 7 OL 21
07CB 38 FA IR C,07C7 0849 05
07CD OC IHC C 084A FD CB 01 C6
07CF CO RET H7 004E C3 18 09
07CF 48 LD C,B 0851 FE 76
0700 20 DEC L 0853 28 1C
07D1 2F 01 LD L,01 0855 4F
07D3 20 F2 JR NZ,07C7 0856 3A 38 40

id in.,oozo
LO E,A
ADII HL,DE
SCF
REI
LO A,E
AHD A
REI M
JR 07F1
XOR A
ADD HL,BC
INC A
JR C.O7E2
SBC HL,BC
DEC A
JR Z,07DC
LO E,1C
ADD A,E
AND A
JR Z,O7F5
RES 0,(IY*01)
EXX
FUSI! IN
BIT l,(IY*01)
IR HZ.0802

CALI. 0808
JR 0805
CALL 0851
BOP HL
EXX
REI
IO D,A
LO BC,(4039)
LO A,C
CP 21
.IR Z,082C
LO A,76
CP 0
JR Z,0847
LO HL,(400E>
CP <HL >
LO A,D
JR HZ,083E
OEC C
JR NZ,083A
INC HL
LO (400E),HL
LO C,21
DEC B
LO (4039),BC
LO A,B
CF (IY+22)
IR Z,0835

AHD A
JR HZ,0812
IO 1,04
JP 0058
CALL 099B
EX DE,IH.
LO (HL),A
INC IR
LO (400E),IM
DEC (IY+39 >
REI
IO C,21
DEC B
SET 0,(IY *01)
JP 0916
CP 76
JR Z,0871
1.0 C,A
LO A.(4038)

110

08*;.? E6 7F ANO 7F 0RC.9 IF RRA
0858 FE 58 CP 58 orea 30 FB JR HE,0887
0858 6F LO L,A OREE 70 LO 0.0
005E 26 40 LO H.40 OOE.O OF RRE.A
0060 88 71 08 COLL 2,0871 08EE 03 FB OUT (FB),A
0863 71 LO (HL),8 onoo 01 POP DE
0864 28 INC L 0801 18 IH8 E
0865 FD 75 38 LO (IY»38),L 0802 EB 5B BIT 3,E
0868 89 RET 0804 28 A7 .JR 2,0870
0869 16 16 •LO 0,16 0806 81 POT' BC
0868 20 08 40 LO HI. (4008) 0007 15 DEE D
086E 23 INE HL 0808 20 AO JR HZ,087A
086F 18 05 .IR 0876 08DA 3E 04 LD A,04
0871 16 01 LO 0,01 OODE 03 FB OUT (FB),A
08?3 21 38 40 LO HL.403C OBOE 80 07 02 BALL 0207
0076 80 E7 02 BALL 02E7 08E1 81 F OP BE
0879 85 PUSH BE 08F2 21 58 40 LO HL.4058
0870 E5 PUSH HL 0BE5 36 76 LD (HL),76
0878 OF XOR A 0BE7 06 20 LD B,20
087C 5F LD E,A 08E9 2B DEE HL
0878 03 FB OUT (FB),A OOF A 36 00 LD (HL),00
087F E1 POP HL 08EE 10 FB DJHZ 08E9
0800 80 43 OF BALL 0F43 08EE 70 LD A,L
0883 38 05 JR 8,0880 08FF CB FF SET 7.A
0805 IF RRA 08F1 3? 38 40 LD (4038),A
0086 03 FB OUT (FB),A oor 4 89 RET
0088 8F RST 8 08F5 3E 17 LD A,17
0889 08 INE 8 08F7 90 SUD B
ORBA OB FB IN A,(FBI ORre 38 OB JR 8,0905
088C 87 ADO A,A OBFA FD BE 22 EP (IY+22)
0088 FA OE 08 JP M,08DE 08FD DA 35 08 JP 8,0835
0890 30 EE JR NE,0880 0900 38 INE A
0892 E5 PUSH HL 0901 47 LO B.A
0893 05 PUSH OE 0902 3E IF LO A,IF
0894 7A LO 0,0 0904 91 SUB E
0895 FE 02 OP 02 0905 BA AB OF JP 8,OFAO
0897 9F SBE A,A 0908 86 02 ADD A,02
0898 A3 ANO E 090A 4F LD 8,A
0899 07 RLCA 090B FO EB 01 4E BIT 1,(IY«O1)
089A A3 ANO E 090F 28 07 JR 2,0918
089B 57 LD D,A 0911 3E 5D LO A,50
0898 4E LD 8,(HL) 0913 91 SUB 8
0898 79 LD 0,0 0914 32 36 40 LD (4038),A
089E 23 INE HL 0917 89 RET
0B?F FE 76 EP 76 0918 EO 43 39 40 LD (4039),BE
080 J 28 24 JR 2,0887 0918 2A 10 40 LD IIL,(4010)
0803 E5 PUSH HL 091F 51 LD 0,8
0804 EB 27 SLA A 0920 3E 22 LO A,22
0806 87 ADD A,A 0922 91 SUB 8
0807 87 ABO A,A 0923 4F LD 8,A
0808 26 OF LD H,OF 0924 3E 76 LD A,76
0800 EB 14 RL H 0926 04 INE B
OBOE 83 ADD A,E 0927 2B 0E8 HI
0008 6F LD L,A 0928 BE EP (HL)
OOOE EB 11 RL 8 0929 20 FE JR HZ,0927
0080 9F SBE A,A 092B 10 FA DJHZ 0927
OBOI AE XOR (HL) 0920 23 INF Hl
0882 4F LO 8,A 092E EO Bl EPIR
0083 06 08 LD B,08 0930 2D DEE Hl
0885 7A LD 0,0 0931 22 OE 40 ID (400E).Ht
0886 EB 01 RLE E 0934 37 SEE
0088 1F RRA 0935 FO RET PO
088? 67 LO H,A 0936 15 OFF 0
0880 OR FB IN A.(FB) 0937 PR RET 2
0888 ir RRA 0938 r.5 PUSH BE
0080 30 FB JR HE.08BA 0939 r.D 9F 09 BALI 099E
ORBE 78 LD A,H 0938 81 POP PC
0880 03 FB OUT (FB),A 0930 41 LD B,8
0882 10 Fi DJHZ 0885 093E 62 LD H,D
0884 E1 POP HL 093F 6B 10 L,E
0885 18 05 JR 0898 0940 36 00 LD (HL),00
0887 OB FB IN A.(FB) 0942 28 DEC HL

111

0943 10 FB DJHZ 0940 09BD 19 ADO HL,DE
0945 EB EX OE,HL 09BC E3 EX (SP),HL
0946 23 IHC HL 0900 30 09 JR NC,09C8
0947 22 OE 40 LO (400E),HL 09BF 05 PUSH DE
0940 C9 RET 09C0 E8 EX OE,HL
0946 T5 PUSII AF 09C1 09 000 HL.BC
O94C CD 75 09 CALI 0975 09C2 CP FX DE.IIL
09 4F 30 08 JR NC,0959 09C3 72 LD (HI 1,0
0951 FD CB 01 46 BIT 0,(IY+01) 09C4 28 DEC HL
0955 20 02 .IR NZ.0959 09C5 73 LD <HL),E
0957 or XOR A 09C6 23 INC HL
0958 D7 RST 10 09C7 01 POP DE
0959 00 LO 0,(80 09C8 23 INC HL
095A E6 3F ANO 3F 09C9 30 DEC A
095C D7 RST 10 09CA 20 EB JR HZ.09B4
0950 00 LO A,(8C) 09CC EB EX DE,IH.
095F 03 IHC OC 09CD 01 POP DE
095F 87 ADD A,A 09CE n POP AF
0960 30 F7 JR NC,0959 09CF A7 ANO A
0962 CI POP BC 0900 ED 52 SBC HL.OE
0963 CO 78 BIT 7,8 0902 44 LO B,H
0965 CB RET Z 0903 40 LD C,L
0966 FE 1A CP 1A 0904 03 INC BC
0968 28 03 JR Z,096D 0905 19 ADD HL.OE
096A FE 38 CP 38 0906 EB EX DE.HL
096C 08 RET C 0907 C9 RET
09/41 AF XOR A 0908 E5 PUSH HL
096E FD CB 01 C6 SET 0,(IY*01» 0909 21 70 40 LO HI.,4070
0972 C3 F5 07 JP 07F5 09DC 54 LD D,H
0975 E5 PUS»! HL 0900 50 LD E.L
0976 21 11 01 LD HL,011i 09DE CI POP BC
0979 CB 7F BIT 7,A 09OF CD EA 09 CALL 09EA
0978 28 02 JR Z,097F 09E2 DO RET NC
0970 E6 3F AND 3F 09E3 C5 PUSH BC
097F FE 43 CP 43 09E4 CO F2 09 CALL 09F2
0981 30 10 JR HC,0993 09F.7 EB EX DE,HI
0983 47 LD B,A 09F8 18 F4 JR 09DE
0904 04 INC 8 09EA 7E LO A,(HL 1
0985 CB 7E BIT 7,(HL) 09EB 08 CP B
0987 23 INC HL 09EC CO RET NZ
0988 28 FB JR Z,09C5 09E0 23 INC HL
0900 10 F9 DJNZ 0985 09F.E 7E LD A .(HI.)
090C CD 77 BIT 6,A 09EF 28 DEC HL
098E 20 02 JR NZ.0992 09F0 09 CP C
0990 FF 18 CP 18 09F1 C9 RET
0992 3F CCF 09F2 E5 PUSH HL
0993 44 LD B.H 09F3 7E LO A,(HL)
0994 4D LD C,L 09F4 FE 40 CP 40
0995 Et POP HL 09F6 38 17 JR C,0A0F
0996 DO RET NC 09F8 CB 6F BIT 5,A
0997 00 LD A,(BC) 09FA 28 14 JR Z,0A10
0998 C6 E4 ADD A,E4 09FC 87 ADD A,A
099A C9 RET 09FD FA 01 OA JP M,0A01
0990 01 01 00 LD OC.0001 OAOO 3F CCF
099E E5 PUSH HI 0001 01 05 00 LO BC,0005
099F CD C5 OE CALL 0EC5 0A04 30 02 JR NC,0A08
0902 E1 POP HL 0006 OE 11 LO C,ll
0903 CD OD 09 CALL 0900 OAOO 17 RLA
0906 20 1C 40 LO HL,(401C) 0009 23 INC HL
0909 EB EX DE,HL OAOA 7E LD A.(IIL)
0900 ED B8 LDDR 0008 30 FB JR NC.0A08
09AC C9 RET OAOO 18 06 JR 0015
0900 F5 PUSH AF OAOF 23 INC HL
09 AF E5 PUSII HL 0010 23 IHC HL
09AF 21 OC 40 LD HL,400C 0011 4F I O C,(IIL>
0902 3E 09 LD A,09 0012 23 IHC HL
0904 5E LD E,<HL) 0013 46 LD B.(HL)
0905 23 INC HL OAJ 4 23 INC HL
0986 56 LD D,(HL) 0A15 09 ADD HL.BC
0907 E3 EX (SP),HL 0016 DI POP DE
0908 A7 AND A 0017 A7 AND A
0909 ED 52 SBC HL.DE 0A18 -ED 52 SBC HLiDE

112

HL.DE

0A1A 44 LO B.H 0A9D 20 20
0A1B 40 LD C,L 0A9F 60
0A1C 19 ADD HL,DE OAAO 69
0A1D EB EX DE,HL 0AA1 IE FF
0A1E C9 RET 0AA3 10 08
OAJF FD 46 22 LD B,(IY422) 0AA5 05
0A22 C5 PUSH BC 0AA6 56
0A23 CD 2C OA CALL 0A2C 0AA7 23
0A26 Cl POP BC OAAR 5E
OA27 05 DEC B 0AA9 E5
0A2B 10 02 JR 0A2C OAAA EB
0A2A 06 10 LD B,18 OAAO IE 00
0A2C FD CB 01 BE RES 1,(IY+01) OAAO 01 IB FC
0A30 OE 21 LD C,21 OADO CO El 07
0A32 C5 PUSH BC 0AB3 01 <?C FF
0A33 CD 10 09 CALL 09IB OAP-6 CD El 07
0A36 Cl POP BC 0AP9 OE F6
0A37 3A 05 40 LD A,(4005) OAPB CO El 07
0A3A FE 40 CP 40 OABE 70
0A3C 38 14 JR C,0A52 OADF CD EB 07
0A3E FD CB 3A FE SET 7,(IY+3A) 0AC2 El
OA42 AF XOR A 0AC3 DI
0A43 CD F5 07 CALL 07F5 0AC4 C9
OA46 2A 39 40 LD HL,(4039) 0AC5 CD AÓ 00
OA49 70 LD A,L 0AC8 El
0A4A B4 OR H 0AC9 CO
0A4B E6 7E AHO 7E OACA E9
0A4D 20 F3 JR H7,0A42 OACP FO CB 01 CE
0A4F C3 18 09 JP 0918 OACF 7E
0A52 54 LD D,H OADO FE 76
0A53 5D LD E,L 0AD2 CA B4 OB
OA54 2D DEC HL 0AD5 06 1A
0A55 4B LD C,B 0AD7 CE 00
0A56 06 00 LD B,00 0AD9 20 69
0A58 ED BO LOIR OADD FF A7
0A5A 2A 10 40 LD HL,(4010) OADO 20 ID
0A5D CD 17 OA CALL 0A17 OADF E7
OA60 C5 PUSH PC OAEO CO 92 00
OAAi 78 LD A,B 0AE3 FE 1A
0A62 2F CPL 0AE5 C2 9A OD
0A63 47 LD B,A OAER E7
0A64 79 LD A,C 0AE9 CD 92 OD
0A65 2F CPL OAtC CD 4E OB
0AA6 4F LO C,A OAEF EF
0A67 03 INC BC OAFO 01 34 CD
0A68 CD AD 09 CALL 09AD 0AF3 F5
0A6B EB EX DE.HL OAF 4 OB
0A6C El POP Hl. 0AF5 CD F5 00
0A6D 19 ADD HL,DE OAFR 1R 3D
0A6E 05 PUSH DE DATA FE A0
0A6F ED BO I DIR OAFC 20 33
0A71 El POP HL OAFE E7
0A72 C9 RET OAFF CO 92 OD
0A73 2A 14 40 LD HL,(4014) 0BO2 CD 4E OB
OA76 CO 40 00 CAIL 0040 0B05 CO 02 OC
0A79 OF RST 18 OPOO C2 AD OE
0A7A FD CB 2D 6F BIT 5,<IY»2D) OPOD E6 IF
0A7E CO RET HZ OPOO 4F
0A7F 21 50 40 LD Hl.4050 OBOE FO CB 01 4E
0002 22 1C 40 LD (4010.HL 0P12 20 OA
0AB5 CD 44 >5 CAIL 1544 0P14 FD 96 38
OARR CD 06 15 CALL 1506 0B17 CB FF
OARP. 30 04 JR C.0A91 OB 19 C6 3C
0A8D 21 FO 08 LD HL.08F0 0P1R 04 71 08
0A90 09 ADD HL.BC 0P1F FU R6 39
0A91 DA 9A 00 JP C,0D9A 0P21 FE 21
0A94 BF CP A 0B23 3A 3A 40
0A95 C3 00 14 JP 14B8 0P26 DE 01
OA90 05 PUSH OE 0P2B CD FA 08
0A99 E5 PUSH HL 0B2B FD CB 01 C6
0A9A- AF XOR A 082F 18 06

JR HZ,OADF
ID H,B
LD L,C
LD E,FF
JR OAAO
PUSH DE
LD D,(HL)
INC HL
LD E.(HL)
PUSH Hl
EX DE,HL
ID E,00
LD BC,FC18
CALL O7E1
LD BC,FF9C
CALL O7E1
LD C,F6
CALL O7E1
LD A,L
CALL O7EB
POP HL
POP DE
RET
CALL 0DA6
POP HL
RET 1
JP (HL)
SET 1,(IY*O1>
LD A,(HL)
CP 76
JP Z,OB84
SUD 1A
ADC A,00
JR Z,OB44
CP A7
JR HZ,OAFA
RST 20
CALL 0092
CP 1A
JP HZ.0D9A
RST 20
CALL OD92
CALL 0B4E
RST 20
ID BC.CD34
PUSH AF
DEC BC
CAIL 00F5
JR 0B37
CP A8
JR NZ,0B31
RST 20
CALL 0092
CALL 0B4E
CALL 0C02
JP HZ,OEAD
AHD IF
LD C,A
BIT 1,(IY+O1)
JR Z,OP1E
SUD (IY*38)
SET 7,A
ADD A,3C
CAIL NC,O071
ADD A.(IY»39)
CP 21
LD A,(403A)
SBC A,01
CALL ORFA
SET 0,(!Y»01)
.JR 0B37

113

OP34
0B37
0B38
0P3A
0B3C
0B3E
0P41
OBU
OP47
OB48
OBI A
0P4B
0P4E
0B51
0B52
0P53
0P55
0P58
0B5C
0P5E
0B6I
0P64
0CA6
0B67
0B6B
0B6C
0P6D
0P6E
0P6F
0D70
0871
0075
OP77
0879
0P7B
0B7D
0R7E
OCOI
0882
0884
0PR7
ORO?
OBRA
OPOB
ORRE
0B92
0893
0R94
0B98
01:99
0B9D
0B9F
0BA1
08A4
0RA6
0PA7
0RA9
ORAB
ORAE
OPAF
0PP2
OBRA
OPPR
0PÜ9
ORRE
OBRO
ORRE
0PC1
0BC3
0BC5
0BC7
0BC9

CD 55 OR CALI 0D55 OBCA F5 PUSH AF
RE RST 18 OPCB CO F5 08 CALL 08F5
D6 IA SUR 1A OPEE 7E LD A,(HL)
CE 00 AOC A,00 OPCF 07 RLCA
28 06 JR Z,0B44 OPDO FE 10 CP 10
CO IR OD CALL ODIO 0PD2 30 06 JR NC,OBDA
C3 84 OR JP 0084 0P04 OF RRCA
04 8B OR CALL HC,0B8B 0BD5 30 02 JR HC,0BD9
E7 RST 20 0BD7 EE 8F XOR 8F
FE 76 CP 76 0809 47 LD B,A
E8 RET l OBDA 11 9E OC LD DE,0C9E
C3 05 OA JP 0AD5 OBDD 3A 3040 LOA,(4030)
CD A6 00 CALI 0DA6 OPEO 93 SUB E
CO RET HZ 0PE1 FA E9 OB JP M.0BE9
El FOT HL OCE 4 Ft POP AF
18 E2 JR OR37 0BE5 2F CPt
CD C5 OA CALL 0AC5 0BE6 AO ANO B
rn CB 01 76 BIT 6,(IY*01) 0BE7 18 02 JR OBEB
CC F4 13 CALL Z,13F4 0PE9 El POP AF
28 OA JR Z,0B6B OBEA BO OR B
C3 07 15 JP 1507 OBEP FE 08 CP OH
3E OR LO A,08 OPEO 38 02 JR C,OPF1
07 RST 10 OPEE EE 8F XOR OF
EO 5B 18 40 LO DE,<4018) 0BF1 09 EXX
78 LO A.B 0PF2 D7 RST 10
B1 OR C 0CF3 09 EXX
OR DEC BC 0PF4 C9 RET
C8 RET Z 0PF5 CO 02 OC CALL 0C02
IA LO A,(DE) 0BE8 47 LD B,A
13 INC DE 0BF9 C5 PUSH BC
FO 53 18 40 LD (4018),DE OPEA CD 02 OC CALL 0C02
CR 77 RIT 6,A OPFD 59 LD E,C
28 ED JR Z,0B66 OBFE C1 POP BC
TE CO CP CO ocrr 51 LO 0,C
28 E7 JR Z,0B64 ocoo 4F LO C,A
C5 PUSH BC OCOI C9 RET
CD 48 09 CALL 094R 0C02 CD C9 15 CALL 15C9
C1 POP BC 0C05 DA AO OE * JP C,OEAD
IR E3 JR OB67 0C08 OE 01 LO C,01
CD C5 OA CALI 0AC5 OCOA C8 RET Z
3E 76 LD A,76 OCOB OE FF LD C,FF
07 RST 10 OCOO C9 RET
C9 RET OCOE FD 46 22 LOB,(1Y*22)
CD C5 OA
FD CB OI C6

CALL 0AC5
SET 0,(IY*01) ocn

0C13
OE
CO

21 LO C.21
18 09 CALL 0918

07
XOR A
RST 10

0C16
0C19

CD
7E

9B 09 CALL 0998
LD A,(HL)

EO 4B 39 40 LD BC,(4039) OCIA 12 LO (DE),A
79 LO A,C 0E1B FO 34 3A JHC(1Y*3A)
FD CB 01 4E BIT 1,<IY+01) OCIE 2A OC 40 L0HL,(400C)
28 05 JR Z.0BA4 0C21 23 INC HL
3E 50 LO A,50 0C22 54 LD 0,H
FD 96 38 SUR (IY+38) 0C23 50 ID E,L
OE 11 LO C,11 0E24 EO B1 CPIR
P9 CP C 0C26 C3 50 OA -IP 0A50
30 02 • IR HE,ORAR 0C29 RR BU 20 7F 81 49 75
OE 01 LD C.OI 5F 40 42 2B 17 1F 37 5? 45 OF 60 2D 44 20 5A 30
CD OR 09 CAIL 090B 4C 45 00 52 5A 40 15 6A 01 14 02 06 00 81 OE 06
C9 RET DE 05 AP 00 06 00 85 OE 00 DC OC 00 08 OE 04 14
CD F5 08 CALL 0DF5 06 DE 06 05 09 OD 04 00 2F OE 05 CF OA 01 00 E9
ED 43 36 40 LD < 4036),PC OF 05 05 14 05 6A OD 00 C3 03 03 AF OI 03 30 07
3E 28 ID A,28 06 I A 06 00 92 OE. 03 6C OE 05 40 03 05 T6 02 00
90 SUB R 7C OE 00 96 14 00 2A OA 06 IA 06 00 AF OP 06 JA
DA AD OE C.OFAD 06 00 AF OB 00 OE OC 06 00 2F OF 00 28 OE 00 20
47 LD B,A OF 00 69 OR 05 CP OA 03 2C 07
3E 01 LO A.01
CB 28 SRA P
30 02 .IR HC,0BC5
3E 04 LO A,04
CB 29 SRA C
30 01 JR HC,OBCA
07 RLCA

114

SOLUTIONS TO EXERCISES
Chapter 1

1(a) 10 FOR X = 63 TO 0 STEP —1 ... use 59 for 1K ZX81's
20 FOR Y = 43 TO 0 STEP -1
30 PLOT X,Y
40 NEXT Y
50 NEXTX

1(b) 10 FOR X= 10 TO 30
20 FOR Y = 5TO 25
30 PLOT X,Y
40 NEXT Y
50 NEXTX

1(c) For 16K Machines:—

19 FOR X = 0TO63
20 PLOT X,0
30 GO SUB 500
40 UNPLOT X,0
50 NEXTX
60 FOR Y = 0 TO 43
70 PLOT 63,Y
80 GO SUB 500
90 UNPLOT 63,Y

100 NEXT Y
110 FOR X=63 TO 0 STEP —1
120 PLOT X,43
130 GO SUB 500
149 UNPLOT X,43
150 NEXTX
160 FOR Y=43 TO 0 STEP —1
170 PLOT 0,Y
180 GO SUB 500
190 UNPLOT 0, Y
200 NEXT Y
210 STOP
500 PAUSE 10
519 POKE 16437,255
520 RETURN

115

For 1K ZX81 's the boundaries of the display will need to be
reduced.

Alternatively try this. (Substitute Y=15 for Y=0 for 1K):

10 LET X=0
20 LET Y=0
30 PLOT X,Y
40 PAUSE 10) or 40 FORA=1TO20
50 POKE 16437,255) 50 NEXT A
60 UNPLOT X,Y
70 LET X=X+(Y=0)-(Y=43)-(X=63 AND Y=0) + (X=0 AND

Y=43)
80 LET Y=Y—(X=0)+(X=63)—(Y=43 AND X=63) + (Y=0 AND

X=0)
90 GO TO 30

1(d) 10 FOR A=0 TO 90 STEP 5
20 LET M=TAN(A*2*PI/360)
30 FOR X=0 TO 63 (use 40for 1K)
40 LET Y=INT (M*X)
50 IF Y>43THEN GO TO 80
60 PLOT X,Y
70 NEXTX
80 NEXT A

1 (e) A line through the point (32,22) with gradient m can be calcul
ated since the slope y—22 = m

so y = m(x—32)+22
Use values of m from —5 to 5 in steps of one half

10 FOR M=—5 TO 5 STEP 0.5
20 FOR X=0TO 63
30 LET Y=INT(M*(X—32)+22)
40 IF Y>43OR Y<0THEN GO TO 60
50 PLOT X,Y
60 NEXTX
70 NEXT M

116

1(f)

2(a)

2(b)

3(a)

3(b)

Equation is x2 + y2 = 402
so x = 40 cos e

and y = 40 sin 9
and we PLOT it for the angle 0 between 0° and 90°

.10 FOR Q = 0TO90
20 LET P=Q*PI/180
30 PLOT 40*COS P,40*SIN P
40 NEXTQ

Chapter 2

Add the following instruction

55 IF A!(I)="-" OR A!(l)="b" THEN GO TO 70

10 DIM S!(40)
20 PRINT "ENTERbSENTENCE:"
30 INPUTS!
40 PRINTS!
50 FOR 1=1 TO 37
60 IF S!(l TO l+2)="THE" THEN GO TO 100
70 NEXT I
80 PRINT "DOESbNOTbCONTAINbTHE.”
90 STOP

100 PRINT "DOESbCONTAINbTHE"

Notice this accepts any word containing, T,H,E, e.g. PATHETIC

Chapter 3

No solution specified: the subject area is open to the reader's
choice.

71 LET V=0
72 FOR J=1 TO 8
73 IF CODE (W!(I,J))>128 THEN LET V=V+1
74 NEXT J
75 IF V<>1 THEN GO TO 70

V counts the number of inverse characters in the word.

117

3(c) ABS is included so that the relative values of N and R are com
pared effectively, i.e. it is unimportant which is the larger.
Without ABS we have for example:

190 IF N—R>5 THEN GO TO 220

If R was 50 and N was 44 the test would not be satisfied
since -6 is not greater than 5.

3(d) Try it and see!

3(e) 30 LET A$(I)=CHR$(I NT(RND*11)+28)

3(f) There is not a way of crashing the program at the input stage
that we have found!

3(g) Add the following line

105 IF N=M AND D>SQR M THEN GO TO 120

3(h) Line 260 terminates with an error if DF is zero.
Add the following:

253 IF DF<>0 THEN GO TO 260
255 PRINT "NObSOLUTIONbPOSSIBLE"
257 STOP

3(i) Line 360 detects a response which is shorter than
the answer keyword, and which is therefore obviously
wrong.

118

APPENDIX
PROGRAM DESIGN AND DEVELOPMENT

Introduction

This section has been written to show the reader how a games program
has been built up from first ideas into a fully working and documented
program.

The writing of programs can generally be split into a number of steps:

1. Defining the problem
2. Outlining the solution
3. Selecting and representing algorithms
4. Coding (or writing the program)
5. Debugging
6. Testing and validating
7. Documentation
8. Maintaining the program

It is vital that a considerable amount of planning and design for a
program takes place before the user touches the keyboard. In particular
the aim and format of the program must be clearly specified, since
ambiguities at this stage will cause problems later. When defining the
method of solution (or algorithm) is it helpful to write this down as a
series of separate steps in a block-structured form, as shown in earlier
chapters. Some programmers like to use flowcharts (example later) but
the author thinks these are not vital if the algorithm is written down in
a structured way. All later stages of the implementation of the program
are based upon this stage and it can be helpful to specify the names
and meanings of variables here. Certainly a list of variables must be
kept as the program is written to avoid confusion or duplication of
names. Even when tracking down errors or program bugs, the
structured method can be traced through to show any logic errors.
Although it can be frustrating for the user with a good idea for a
program to wait for an hour or so following this method before getting
on the ZX81, he will find it saves a great deal of time later: there will be
much fewer errors and those present will be easier to find.

This approach, while certainly the best, does present problems for those
beginning to program, since such users will not have all their ideas at the
beginning of the design process. The remainder of this section

119

represents an alternative of gradually improving upon an initial simple
program.

Sample Specification

Step One, defining the problem means “What is the Program to do" or
"What is its specification". Here is the specification of the program which
will be covered in this section:

"The program is to draw a large block on the screen which represents a
thick dungeon wall. A prisoner under the user's control has to dig him
self out from one end to the other. However parts of the wall are of
made of hard rock, which he must dig round. If he takes too long a
Warder will come looking for him and if he is found he will be taken
back and the tunnels he has dug filled in. The object is for the prisoner
to escape."

Those people without 16K expansions will realise that (without using
machine code) it will not be possible for their ZX81's to handle such a
program. Even so the first part of this section is just as applicable to 1K
as to 16K, so continue reading.

The specification has given us three main problems:

1. We have to be able to move a character representing the
prisoner round the screen.

2. Parts of the screen have to be designated "No-Go" areas
which the prisoner must go round, and

3. We have to make a second character follow the paths made
by the "Prisoner" while looking for him.

PROBLEM ONE - MOVING A CHARACTER ROUND THE SCREEN

As described earlier in the book there are two ways of printing a
character on the screen, "PRINT AT" and "PLOT". We will use "PRINT
AT" because any character can be displayed by this statement. Since it
is not necessary to input the co-ordinates for every move and since we
do not want the program to stop while waiting for an input we will use
the 'INKEYS" statement. The following program shows briefly how
this can be done.

120

5
10
20
30
40
50

REM PROGRAM 1
LET X=5
LET Y=1
IF INKEY$="8" THEN LET Y=Y+1
PRINT AT X,Y;"P"
GO TO 30

Y is the horizontal position which is incremented everytime the "Right
Arrow" or "8" key is pressed thus drawing a line towards the right.
Note that the line continues for as long as the "Right Arrow" key is
pressed. If we can move in one direction like this then we can move in
any direction by incorporating the other arrow keys in the program. One
fault with the above program is that once the line reaches a certain length
it crashes with an error message B/40 which means that the value of "Y"
in line 40 is too large. The computer has tried to draw off the screen,to
prevent this happening insert the following line:

35 IF Y>30 THEN LET Y=Y-1

The line will now no longer be drawn past column 30.

When the above technique is used to draw a line in all directions it
becomes a very versatile method of drawing on the screen. The following
"Sketcher" program demonstrates this. It makes the ZX81 imitate a
childs Etch-A-Sketch machine. Movement and character changing are
shown below:

5—8 Left, Down, Up, Right
D Change character to a dot
B Change character to a blank
S Scroll whole picture
A Change character back to black square
C Press to insert your own character

5
10
20
30
40
50
60
70
80

REM SKETCHER PROGRAM
LET X=10
LET Y=12
LET P$=CHR$(128)
LET X=X—(INKEY$="7")+(INKEY$="6")
LET Y=Y—(INKEY$="5")+(INKEY$="8")
IF INKEY$="C" THEN GO SUB 300
IF INKEY$="A" THEN LET P$=CHR$(128)
IF INKEY$="D" THEN LET P$="."

121

90 IF INKEY$="B” THEN LET P$="b"
100 IF INKEY$="S" THEN SCROLL
110 IF Y>31 THEN LET X=X+1
120 IF Y>31 THEN LET Y=0
130 IFY=0THEN LET Y=Y+1
140 IF X=0THEN LET X=X+1
150 IF X>20THEN LET X=0
160 IFX=0THEN LET Y=Y+1
170 PRINT AT X,Y;P$
180 GO TO 40
300 PRINT AT 1,1;"CHARACTER="
310 INPUT P$
320 PRINT AT 1,1 f'bbbbbbbbbb”
330 RETURN

Lines 10 to 30
Lines 40 and 50

Lines 60 to 90

Sets up coordinates and character to be printed.
Change the character co-ordinates, compare with Line
30 in Program 1.
Allow character to be changed.

Lines 110 to 160 Stop the character from going off the screen.
Lines 300 to 330 Allow the user to change the character to any other

character or string.

We have not totally achieved our objective as the Sketcher Program and
Program 1 are drawing lines round the screen rather than moving a
character. To create the illusion of movement we must erase the
character everytime it moves. To do this we must store the old co
ordinates and print a blank on them. Insert the following lines into
Program 1: —

25 LET S=X
27 LET T=Y
45 PRINT ATS,T/'b"
50 GO TO 25

Note how the character flashes — this is because it is constantly rubbing
itself out. Try and work out how to stop the flashing (answer at the
end of this section) and try to incorporate this technique into the
Sketcher Program.

The two programs above both fit into a 1K ZX81 although memory full
errors may occur with the Sketcher Program as the screen begins to fill

122

up. For the second problem below (defining parts of the screen as
No-Go areas) a 16K expansion must be used.

PROBLEM TWO: DEFINING "NO-GO" AREAS ON SCREEN

By the expression "No-Go Areas" is meant a part of the screen which a
program such as Sketcher cannot draw on and must go round to pass.
This means that the ZX81 must know what is being displayed on the
screen. The easiest way of doing this is to store the screen contents in
an array. This is why a 16K expansion is needed. The array will be
dimensioned as 21x31 (the number of "PRI NT AT" positions) so that
every time a character is printed on the screen a corresponding digit
should be placed at the correct position in the array. For example if a
"3" is printed on the screen at 5,7 then a "3" is stored in the array at
5,7.

PRINT AT X,Y;"3"
LET A(X,Y)=3

To create No-Go areas on the screen therefore all we have to do is place
values in the array. If we try to draw a character in a No-Go screen
position then we have to move the character back to its old position.

This BLOCK program gives a demonstration of the No-Go Areas, as well
as a moving (self-erasing) character. Move the character by using the
"Arrow" keys.

5 REM BLOCK PROGRAM
10 DIMA(21,31)
20 FOR S=1 TO 21
30 FOR T=1 TO 31
40 LET X=INT(RND*10+1)
45 IF X>8 THEN PRINT AT S,T;"B"
50 IFX>8THEN LET A(S,T)=7
60 NEXTT
70 NEXTS

100 LET X=10
110 LETY=1
120 LET S=X
130 LETT=Y
140 LET X=X—(INKEY$="7")+(INKEY$='6 ")
150 LET Y=Y—(INKEY$="5")+(INKEY$="8 ")

123

160 IF A(X,Y)=7 THEN GO SUB 200
170 PRINT ATX, Y;"O"
180 PRINT ATS,T;"b"
190 GOTO 120
200 LET X=S
210 LET Y=T
220 RETURN

This program produces a screen full of random black squares. Once the
flashing "0" has appeared, move about by using the arrow keys. No
matter how hard you try you will be unable to move the "0" through a
black square. This is how the program works.

Line 10
Lines 20 to 70

Lines 100 to 110
Lines 120 to 130
Lines 140 to 150
Line 160

Lines 170 to 190
Lines 200 to 220

Sets up the two dimensional array.
Fills randomly chosen parts of the array with 7 and
prints out the corresponding position on the screen.
Set up the starting position of the flashing "0".
Store the previous position of the flashing "0".
Input the new position for the "0" to go to.
Finds out whether the new position of the "0” is a
No-Go Area by looking at the corresponding position
in the array.
Print the "0” and erase the old "0”.
Return the flashing "0" to its old position if it is
trying to pass a No-Go Area.

An interesting alteration to liven this program up can be made as
follows: —

200 LET X=S—2
210 LETY=T—2

Now everytime the flashing "O" reaches a No-Go Area it will bounce
away from it. As we now have the two main techniques which form the
basis of the game program we can now begin work on it. The diagram
on the next page shows a general algorithm for the game in the form of
a flowchart. It is around this that we shall write the Game Program.

124

125

This flowchart is not an algorithm for the complete game because we
want a "Warder" to be able to chase the "Prisoner" through the
"tunnels" and capture him. However this part of the program can be
added later at the "Print Time Up" box. Box 1 carries out the same
functions as lines 10 to 100 in the block program and can be broken
down into the following sections.

a) Set up array
b) Set up initial variables (co-ordinates etc.)
c) Fill array with random flags (No-go areas)
d) Print out picture
e) Set up time limit

Up to this point we have reached Step 3, in the program — writing
procedure, that is we have: —

DEFINED THE PROBLEM, this was our specification.
OUTLINED THE SOLUTION, the techniques needed to write the

program, i.e. character movement and No-go Areas.
SELECTED AND REPRESENTED ALGORITHMS, such as the flow

chart and the sketch and block programs.

We have also carried out some coding, debugging and documentation in
the process of outlining the solution. Coding of the actual game
program can now be done as all of the boxes in the flowchart have been
covered already.

10 REM ESCAPE GAME
20 REM INITIALISE
30 FAST
40 DIMA(20,22)
50 LET X=10
60 LET Y=2
70 LET C=0
80 LET A$="O"
90 REM FILL ARRAY

I00 FOR 1=1 TO 100
110 LET V=INT(RND*20+1)
I20 LET D=INT(RND*20+1 j
I30 LET A(V,D)=7
I40 NEXT I
I50 REM PRINT PICTURE

126

160 SLOW
170 CLS
180 FOR 1=1 TO 20
190 PRINT

200 NEXT I
210 REM SETUP TIME LIMIT
220 LET TIME = INT(RND*200+1)
230 REM MOVING PRISONER
240 LET C=C+1
250 IF OTIME THEN GO TO 500
260 LET K=X
270 LET P=Y
280 LET X=X—(INKEY$="7")+(INKEY$="6")
290 LET Y=Y—(INKEY$="5")+(INKEY$="8")
295 IF Y>20 THEN GOTO 400
300 IF A(X,Y)=7THEN LET X=K
310 IF A(X,Y)=7THEN LET Y=P
320 PRINT AT K,P;7b"
330 LET A(X,Y)=8
340 PRINT AT X,Y;A$
350 GO TO 230
400 PRINT AT 1,20;"YOUbHAVE"
410 PRINT AT 3,20;"ESCAPED"
420 GO TO 700
500 PRINT AT 1,20;"YOUbARE"
510 PRINT AT 3,20 ;"CAUGHT"
700 STOP

When this program is run the screen will clear for about five seconds
while the initialisation and array-filling take place (lines 10 to 140).
A large black square is then drawn on the left of the T.V. screen with a
flashing "0” at the left edge. The flashing "0" represents the prisoner
and the black square shows the ground through which he must dig to
make his escape. Escape is achieved when he reaches the right hand
side. You may have noticed that this program uses a slightly different
method of filling the array than does the block program. In this program
the density of No-Go areas can be chosen (here 100) by the size of the
FOR NEXT loop in line 100 . The "Tunnel" effect is created by the
printing of blanks in line 320 which also causes the "0" to flash. Try
making changes to the program, for example to the density of No-Go
areas, the time limit, or adding boundaries to the top, bottom and left
of the screen so that the program does not crash with a 3/300 error if

127

you go off the edge.

This game provides a good springboard for further expansions, however
we said that it was our aim to incorporate a "Warder" to capture the
prisoner. The warder has to either follow the exact course taken by the
prisoner or work his way through the tunnels by following the array.
Let us look at the second method first. The array used by this program
so far contains 3 numbers; 0,7, 8, which correspond to the screen display
as shown below.

00000007

SCREEN DISPLAY

8 = Passage taken by "Prisoner"
7 = No go areas
0 = Areas which can be passed through

As the ZX81 will use the array to locate the position of the "Prisoner"
the array must show where he is! This can be done by adding the line.

245 IF OTIME THEN LET A(X,Y) = 9

Now as soon as the prisoners time is up his position is marked in the
array by a "9".

The ZX81 (or warder) can now search from a starting position along
the trail of "8"s in the array for the "9" (prisoners position). The
computer not only has to search for the "9" but also "8"s so that it can
follow a route made by the prisoner. To do this the computer has to
search for an "8" or "9" in the squares adjacent to its present position.

128

Assume the "Warder” is at square X — he will search in the following
way:

So to search from X to 1
1 to 2
2 to 3
3 to 4

T = T + 1
S = S — 1&T = T — 1
S = S + 2
T = T- 1&S = S- 1

So that when the ZX81 has found an adjacent "8” it moves onto it and
starts the search procedure again. Because this order of searching has
been chosen, the "Warder" will tend to move right and up, rather than
down and left. The coding to do this will look like this

500 REM CHASING WARDER
510 LET D =7
520 LET S=10
530 LETT=1
540 LET F=S
550 LET G=T
560 LETT=T+1
570 IF A(S,T)<D THEN GO TO 1000
580 LET S=S—1
590 LETT=T—1
600 IF A(S,T)>D THEN GOTO 1000
610 LET S=S+Z
620 IF A(S,T)>D THEN GO TO 1000
630 LET S=S—1
640 LETT=T—1
650 IF A(S,T)>D THEN GOTO 1000
660 GO TO 560

1000 PRINT AT S,T;"X"
129

1010 PRINT AT F,G;"b"
1020 IF A(S,T)=9 THEN GOTO 1100
1030 GOTO 540
1100 PRINT AT 1,23;"GOT"
1110 PRINT AT 3,23;"YOU"

Because the same order of search is used by the "Warder" (right, up,
down, left) it will occasionally become trapped. To prevent this from
happening the search order can be randomised, though the "Warder"
should be more inclined to move forward than to move backwards.

INDEX
(Program names in Italics)

Axes 1 Key table 101
BBC 42 Lines 3
Binary 96 Maths Stepping Stones 70
Bomb-proofing 51 Modules 54
Bouncing 15 Money Maze 27
Breakers Club 42 Monitor Ch.4
Characters 36 Monitor Listing 103
Character Display 101 Moving objects 8
Character Generator Display 102 Parabolas 19
Character table 102 PAUSE 22
Circles 17 Picking Pairs 84
Command Table 101 PLOT 3
Computer Studies 66 PRINT AT 19
Coordinates 2 Primes 88
Copycat 82 Program categories 61
Data 35 Pythagoras 11
Data processing 35 Quiz 92
Data structures 41 Radians 11
Data tables 98 Realtime 22
Duck Shoot 30 Record 41
Education Ch. 3 Rectangle 4
Ellipse 19 Requirement 50
Entry points 98 Routines 98
Equations 5 School subjects 67
Feasibility study 38 Shooting Gallery 25
Fields 41 Solutions 115
Files 41 Spelling Big Words 74
Garbage -free 53 Spirals 14
GIGO 53 Spots Before the Eyes 77
Grab the Grunger 79 String handling 36
Gradient 7 Systems analysis 38
Graphics Ch.1 Tables 43
Hexadecimal 96 Tangents 10
Hex Display 100 Trees 44
Implementation 40 Trigonometry 10
Information Processing Ch.2 User-friendliness 52
INKEYs 22 Validation 53
Iteration 90 Variable length 46

Video Show 20
131

If you have a Sinclair ZX81 and want to use it to its full potential then,
as the experts have all agreed, this is the book for you. It contains
detailed guidelines and documented programs in the areas of gaming,
information retrieval and education, as well as a unique listing of the
8K ROM for machine code applications.

'Far and away the best.. . once again Linsac has produced the book for
the serious end of the market'. — Your Computer, November 1981.

‘The ZX81 Companion is a most professional product. . . with many
good illustrative programs, tips and warnings'. — Education Equipment,
October 1981.

'Bob Maunder's attempt to show meaningful uses of the machine is
brilliantly successful . . . thoughtfully written, detailed and illustrated
with meaningful programs ... To conclude — the book is definitely an
outstandingly useful second step for the ZX81 user'. - Educational
ZX80/81 Users’ Group Newsletter, September 1981.

Bob Maunder has been involved in the ZX series of microcomputers since he acquired
the first ZX80 kit in March 1980, and he is co-author of Linsac's ‘The ZX80
Companion’. He holds a MSc in Computer Science from Birmingham University and
is Head of Computing at Hartlepool College, where he pioneered the use of the
ZX80 in education.

UK Price £7.95
LINSAC

ISBN 0 907211 01 1

Linsac

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	THE ZX81 COMPANION
	PREFACE
	CONTENTS
	INTRODUCTION AND NOTATION
	CHAPTER ONE - GRAPHICS AND REALTIME TECHNIQUES
	CHAPTER TWO - INFORMATION PROCESSING
	CHAPTER THREE - EDUCATION
	CHAPTER FOUR - THE MONITOR
	SOLUTIONS TO EXERCISES
	APPENDIX PROGRAM DESIGN AND DEVELOPMENT
	INDEX
	
✅ Raw HQ scan : Maxime CROIZER for ACME
✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me
✅ 2020-12-16

